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ROADMAP OF LANGUAGE MODELING
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ROADMAP OF LANGUAGE MODELING
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IT LOOKS NAIVE?

Why did no one think of this before?

Better question: Why wasn’t contextual pre-training
popular before 2018 with ELMo?

Good results on pre-training is >1,000x to 100,000

more expensive than supervised training.

o E.g., 10x-100x bigger model trained for 100x-1,000x as many steps.

o Imagine it’'s 2013: Well-tuned 2-layer, 512-dim LSTM sentiment analysis
gets 80% accuracy, training for 8 hours.

o Pre-train LM on same architecture for a week, get 80.5%.

o Conference reviewers: “Who would do something so expensive for such
a small gain?”

(&‘, ZocniTive ComputaTion Group
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WHY CAN WE NoT Do TRUE BIDIRECTIONAL (USING LSTM)?

Unidirectional context
Build representation incrementally
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WHY CAN WE NoT Do TRUE BIDIRECTIONAL (USING LSTM)?

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
[ f f ! | f
Layer2 = Layer2 [—= Layer2 Layer2 ||| Layer2 || || Layer2
[ f [ [ | |
Layer2 [— Layer2 |—= Layer2 Layer2 [|| Layer2 [] || Layer2
f f f I f T
<s> open a <s> open a

Assume we want to predict “@a” when we see
“open” [left to right]

But the layer above “open” has information about

( ‘ “a” from [right to left] .
&_ ZocniTive CompruraTion Group ﬂ
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SOLUTION

e Solution: Mask out k% of the input words, and

then predict the masked words
o Wealwaysuse k=15%

store gallon

T 1

the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: Too expensive to train
e Too much masking: Not enough context

L\‘,, Zocrmive CompuraTion Group
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IN ADDITION TO MASK LM: NEXT SENTENCE PREDICTION

e To learn relationships between sentences, predict
whether Sentence B is actual sentence that
proceeds Sentence A, or a random sentence

Sentence A= The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

To summarize what we have seen so far, BERT improves over previous methods
by introducing “real” bidirectionality via mask LM, and on top of that, BERT

further uses a multi-task learning setup to predict the relation between two
adjacent sentences.

How is it implemented?--Transformers

«\,., ZocrrTive CompuraTion Group
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TRANSFORMERS

Transformer encoder

Multi-headed self attention )
o Models context Fg:::rd Multi-Head Attention
Feed-forward layers v | ez
o Computes non-linear hierarchical features Atenton

. o= e, :
Layer norm and residuals = —
o Makes training deep networks healthy S

Input
Embedding

Positional embeddings y

Inputs

o Allows model to learn relative positioning
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OVERVIEW

NSP: Next sentence prediction

NSP Mask LM Mask LM \
* * *
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*
\ Unlabeled Sentence A and B Pair
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TRAINING DETAILS

Data: Wikipedia (2.5B words) + BookCorpus (800M
words)

Batch Size: 131,072 words (1024 sequences * 128
length or 256 sequences * 512 length)

Training Time: 1M steps (~40 epochs)

Optimizer: AdamW, 1e-4 learning rate, linear decay
BERT-BRase: 12-layer, 768-hidden, 12-head
BERT-Large: 24-layer, 1024-hidden, 16-head
Trained on 4x4 or 8x8 TPU slice for 4 days
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FINE-TUNING
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(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG
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Learning a start and end vector from T,

Start/End Span

a0
(e )(n ) [n ) Tem 7]

BERT

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1
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(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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TASKS THAT ARE SIGNIFICANTLY IMPROVED BY BERT

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 86.0 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 56.8| 710
OpenAl GPT 82.1/81.4 703 88.1 913 454 800 823 560 752
BERTgASE 84.6/83.4 71.2 90.1 935 521 858 889 664 79.6
BERT] ARGE 86.7/85.9 72.1 91.1 949 605 865 893 70.1| 819

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAl GPT = (L=12, H=768, A=12); BERTgasg = (L=12, H=768,
A=12); BERTarge = (L=24, H=1024, A=16). BERT and OpenAl GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.

com/language-unsupervised/.
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TASKS THAT ARE SIGNIFICANTLY IMPROVED BY BERT

System Dev Test
ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
BERTgASE 81.6 -

BERT| ARGE 86.6 86.3
Human (expert)Jr - 85.0
Human (5 annotations)! -  88.0

Table 4: SWAG Dev and Test accuracies. Test results
were scored against the hidden labels by the SWAG au-
thors. THuman performance is measure with 100 sam-
ples, as reported in the SWAG paper.
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RESOURCES

BERT [paper]: https://arxiv.org/abs/1810.04805

BERT [presentation]:
https://nlp.stanford.edu/seminar/details/jdevlin.pdf

Transformers [blog]: http://jalammar.github.io/illustrated-

transformer/

Mask LM Demo By CogComp:
http://orwell.seas.upenn.edu:4001/
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