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Last time we concluded by noticing that minimizing the empirical risk (or the training

error) is not in itself a solution to the learning problem, it could only be considered a

solution if we can guarantee that the di�erence between the training error and the

generalization error (which is also called the generalization gap) is small enough.

We formalized such requirement using the probability:

That is if this probability is small, we can guarantee that the di�erence between the

errors is not much, and hence the learning problem can be solved.

In this part we’ll start investigating that probability at depth and see if it indeed can

be small, but before starting you should note that I skipped a lot of the mathematical

proofs here. You’ll often see phrases like “It can be proved that …”, “One can prove

…”, “It can be shown that …”, … etc without giving the actual proof. This is to make

the post easier to read and to focus all the e�ort on the conceptual understanding of

the subject. In case you wish to get your hands dirty with proofs, you can �nd all of

them in the additional readings, or on the Internet of course!

Independently, and Identically Distributed

The world can be a very messy place! This is a problem that faces any theoretical

analysis of a real world phenomenon; because usually we can’t really capture all the

messiness in mathematical terms, and even if we’re able to; we usually don’t have the

tools to get any results from such a messy mathematical model.

P[ |R(h) − | > ϵ]sup
h∈H

Remp(h)
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So in order for theoretical analysis to move forward, some assumptions must be

made to simplify the situation at hand, we can then use the theoretical results from

that simpli�cation to infer about reality.

Assumptions are common practice in theoretical work. Assumptions are not bad in

themselves, only bad assumptions are bad! As long as our assumptions are

reasonable and not crazy, they’ll hold signi�cant truth about reality.

A reasonable assumption we can make about the problem we have at hand is that

our training dataset samples are independently, and identically distributed (or

i.i.d. for short), that means that all the samples are drawn from the same probability

distribution and that each sample is independent from the others.

This assumption is essential for us. We need it to start using the tools form

probability theory to investigate our generalization probability, and it’s a very

reasonable assumption because:

1. It’s more likely for a dataset used for inferring about an underlying probability

distribution to be all sampled for that same distribution. If this is not the case, then

the statistics we get from the dataset will be noisy and won’t correctly re�ect the

target underlying distribution.

2. It’s more likely that each sample in the dataset is chosen without considering any

other sample that has been chosen before or will be chosen after. If that’s not the

case and the samples are dependent, then the dataset will su�er from a bias

towards a speci�c direction in the distribution, and hence will fail to re�ect the

underlying distribution correctly.

So we can build upon that assumption with no fear.
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The Law of Large Numbers

Most of us, since we were kids, know that if we tossed a fair coin a large number of

times, roughly half of the times we’re gonna get heads. This is an instance of wildly

known fact about probability that if we retried an experiment for a su�ciency large

amount of times, the average outcome of these experiments (or, more formally, the

sample mean) will be very close to the true mean of the underlying distribution. This

fact is formally captured into what we call The law of large numbers:

If  are  i.i.d. samples of a random variable  distributed

by . then for a small positive non-zero value :

This version of the law is called the weak law of large numbers. It’s weak because

it guarantees that as the sample size goes larger, the sample and true means will

likely be very close to each other by a non-zero distance no greater than epsilon. On

the other hand, the strong version says that with very large sample size, the sample

mean is almost surely equal to the true mean.

The formulation of the weak law lends itself naturally to use with our generalization

probability. By recalling that the empirical risk is actually the sample mean of the

errors and the risk is the true mean, for a single hypothesis  we can say that:

Well, that’s a progress, A pretty small one, but still a progress! Can we do any better?

, , … ,x1 x2 xm m X

P ϵ

P[ [X] − > ϵ] = 0lim
m→∞
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∣
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∣

∣
∣

h

P [|R(h) − (h)| > ϵ] = 0lim
m→∞

Remp

https://en.wikipedia.org/wiki/Sample_mean_and_covariance#Sample_mean
https://en.wikipedia.org/wiki/Law_of_large_numbers
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Hoe�ding’s inequality

The law of large numbers is like someone pointing the directions to you when you’re

lost, they tell you that by following that road you’ll eventually reach your destination,

but they provide no information about how fast you’re gonna reach your destination,

what is the most convenient vehicle, should you walk or take a cab, and so on.

To our destination of ensuring that the training and generalization errors do not

di�er much, we need to know more info about the how the road down the law of

large numbers look like. These info are provided by what we call the concentration

inequalities. This is a set of inequalities that quanti�es how much random variables

(or function of them) deviate from their expected values (or, also, functions of them).

One inequality of those is Heo�ding’s inequality:

If  are  i.i.d. samples of a random variable  distributed

by , and  for every , then for a small positive non-zero value 

:

You probably see why we speci�cally chose Heo�ding’s inequality from among the

others. We can naturally apply this inequality to our generalization probability,

assuming that our errors are bounded between 0 and 1 (which is a reasonable

assumption, as we can get that using a 0/1 loss function or by squashing any other

loss between 0 and 1) and get for a single hypothesis :

, , … ,x1 x2 xm m X

P a ≤ ≤ bxi i

ϵ

P[ [X] − > ϵ] ≤ 2 exp( )
∣

∣
∣ E
X∼P

1

m
∑
i=0

m
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∣

∣
∣

−2mϵ2

(b − a)2

h

https://en.wikipedia.org/wiki/Concentration_inequality
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This means that the probability of the di�erence between the training and the

generalization errors exceeding  exponentially decays as the dataset size goes

larger. This should align well with our practical experience that the bigger the dataset

gets, the better the results become.

If you noticed, all our analysis up till now was focusing on a single hypothesis . But

the learning problem doesn’t know that single hypothesis beforehand, it needs to

pick one out of an entire hypothesis space , so we need a generalization bound

that re�ects the challenge of choosing the right hypothesis.

Generalization Bound: 1st Attempt

In order for the entire hypothesis space to have a generalization gap bigger than , at

least one of its hypothesis:  or  or  or … etc should have. This can be

expressed formally by stating that:

Where  denotes the union of the events, which also corresponds to the logical OR

operator. Using the union bound inequality, we get:

We exactly know the bound on the probability under the summation from our

analysis using the Heo�ding’s inequality, so we end up with:

P[|R(h) − (h)| > ϵ] ≤ 2 exp(−2m )Remp ϵ2

ϵ

h

H

ϵ

h1 h2 h3

P[ |R(h) − (h)| > ϵ] = P[ |R(h) − (h)| > ϵ]sup
h∈H

Remp ⋃
h∈H

Remp

⋃

P[ |R(h) − (h)| > ϵ] ≤ P[|R(h) − (h)| > ϵ]sup
h∈H

Remp ∑
h∈H

Remp

https://en.wikipedia.org/wiki/Logical_disjunction#Union
https://en.wikipedia.org/wiki/Boole%27s_inequality
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Where  is the size of the hypothesis space. By denoting the right hand side of the

above inequality by , we can say that with a con�dence :

And with some basic algebra, we can express  in terms of  and get:

This is our �rst generalization bound, it states that the generalization error is

bounded by the training error plus a function of the hypothesis space size and the

dataset size. We can also see that the the bigger the hypothesis space gets, the

bigger the generalization error becomes. This explains why the memorization

hypothesis form last time, which theoretically has , fails miserably as a

solution to the learning problem despite having ; because for the

memorization hypothesis :

But wait a second! For a linear hypothesis of the form , we also have 

 as there is in�nitely many lines that can be drawn. So the generalization

error of the linear hypothesis space should be unbounded just as the memorization

hypothesis! If that’s true, why does perceptrons, logistic regression, support vector

machines and essentially any ML model that uses a linear hypothesis work?

Our theoretical result was able to account for some phenomena (the memorization

hypothesis, and any �nite hypothesis space) but not for others (the linear hypothesis,

P[ |R(h) − (h)| > ϵ] ≤ 2|H| exp(−2m )sup
h∈H

Remp ϵ2

|H|

δ 1 − δ

|R(h) − | ≤ ϵ ⇒ R(h) ≤ (h) + ϵRemp Remp

ϵ δ

R(h) ≤ (h) +Remp

ln |H| + ln 2
δ

2m

− −−−−−−−−−

√

|H| = ∞

= 0Remp

hmem

R( ) ≤ 0 + ∞ ≤ ∞hmem

h(x) = wx+ b

|H| = ∞
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or other in�nite hypothesis spaces that empirically work). This means that there’s still

something missing from our theoretical model, and it’s time for us to revise our

steps. A good starting point is from the source of the problem itself, which is the

in�nity in .

Notice that the term  resulted from our use of the union bound. The basic idea of

the union bound is that it bounds the probability by the worst case possible, which is

when all the events under union are mutually independent. This bound gets more

tight as the events under consideration get less dependent. In our case, for the

bound to be tight and reasonable, we need the following to be true:

For every two hypothesis  the two events 

 and  are likely to be

independent. This means that the event that  has a generalization gap

bigger than  should be independent of the event that also  has a

generalization gap bigger than , no matter how much  and  are close

or related; the events should be coincidental.

But is that true?

Examining the Independence Assumption

The �rst question we need to ask here is why do we need to consider every

possible hypothesis in ? This may seem like a trivial question; as the answer is

simply that because the learning algorithm can search the entire hypothesis space

looking for its optimal solution. While this answer is correct, we need a more formal

answer in light of the generalization inequality we’re studying.

|H|

|H|

, ∈ Hh1 h2

|R( ) − ( )| > ϵh1 Remp h1 |R( ) − ( )| > ϵh2 Remp h2

h1

ϵ h2

ϵ h1 h2

H
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The formulation of the generalization inequality reveals a main reason why we need

to consider all the hypothesis in . It has to do with the existence of . The

supremum in the inequality guarantees that there’s a very little chance that the

biggest generalization gap possible is greater than ; this is a strong claim and if we

omit a single hypothesis out of , we might miss that “biggest generalization gap

possible” and lose that strength, and that’s something we cannot a�ord to lose. We

need to be able to make that claim to ensure that the learning algorithm would never

land on a hypothesis with a bigger generalization gap than .

Looking at the above plot of binary classi�cation problem, it’s clear that this rainbow

of hypothesis produces the same classi�cation on the data points, so all of them

have the same empirical risk. So one might think, as they all have the same ,

why not choose one and omit the others?!

H suph∈H

ϵ

H

ϵ

Remp
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This would be a very good solution if we’re only interested in the empirical risk, but

our inequality takes into its consideration the out-of-sample risk as well, which is

expressed as:

This is an integration over every possible combination of the whole input and output

spaces . So in order to ensure our supremum claim, we need the hypothesis to

cover the whole of , hence we need all the possible hypotheses in .

Now that we’ve established that we do need to consider every single hypothesis in 

, we can ask ourselves: are the events of each hypothesis having a big

generalization gap are likely to be independent?

Well, Not even close! Take for example the rainbow of hypotheses in the above plot,

it’s very clear that if the red hypothesis has a generalization gap greater than , then,

with 100% certainty, every hypothesis with the same slope in the region above it will

also have that. The same argument can be made for many di�erent regions in the 

 space with di�erent degrees of certainty as in the following �gure.

R(h) = [L(y,h(x))] = L(y,h(x))P(x, y) dxdyE
(x,y)∼P

∫
Y

∫
X

X, Y

X × Y H

H

ϵ

X × Y
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But this is not helpful for our mathematical analysis, as the regions seems to be

dependent on the distribution of the sample points and there is no way we can

precisely capture these dependencies mathematically, and we cannot make

assumptions about them without risking to compromise the supremum claim.

So the union bound and the independence assumption seem like the best

approximation we can make,but it highly overestimates the probability and makes

the bound very loose, and very pessimistic!

However, what if somehow we can get a very good estimate of the risk  without

needing to go over the whole of the  space, would there be any hope to get a

better bound?

The Symmetrization Lemma

R(h)

X × Y
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Let’s think for a moment about something we do usually in machine learning

practice. In order to measure the accuracy of our model, we hold out a part of the

training set to evaluate the model on after training, and we consider the model’s

accuracy on this left out portion as an estimate for the generalization error. This

works because we assume that this test set is drawn i.i.d. from the same

distribution of the training set (this is why we usually shu�e the whole dataset

beforehand to break any correlation between the samples).

It turns out that we can do a similar thing mathematically, but instead of taking out a

portion of our dataset , we imagine that we have another dataset  with also size 

, we call this the ghost dataset. Note that this has no practical implications, we

don’t need to have another dataset at training, it’s just a mathematical trick we’re

gonna use to git rid of the restrictions of  in the inequality.

We’re not gonna go over the proof here, but using that ghost dataset one can

actually prove that:

where  is the empirical risk of hypothesis  on the ghost dataset. This

means that the probability of the largest generalization gap being bigger than  is at

most twice the probability that the empirical risk di�erence between  is larger

than . Now that the right hand side in expressed only in terms of empirical risks, we

can bound it without needing to consider the the whole of , and hence we can

bound the term with the risk  without considering the whole of input and

output spaces!

S S ′

m

R(h)

P[ |R(h) − (h)| > ϵ] ≤ 2P[ | (h) − (h)| > ] (1)sup
h∈H

Remp sup
h∈H

Remp R′
emp

ϵ

2

(h)R′
emp h

ϵ

S,S ′

ϵ
2

X × Y
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This, which is called the symmetrization lemma, was one of the two key parts in

the work of Vapnik-Chervonenkis (1971).

The Growth Function

Now that we are bounding only the empirical risk, if we have many hypotheses that

have the same empirical risk (a.k.a. producing the same labels/values on the data

points), we can safely choose one of them as a representative of the whole group,

we’ll call that an e�ective hypothesis, and discard all the others.

By only choosing the distinct e�ective hypotheses on the dataset , we restrict the

hypothesis space  to a smaller subspace that depends on the dataset .

We can assume the independence of the hypotheses in  like we did before with 

 (but it’s more plausible now), and use the union bound to get that:

Notice that the hypothesis space is restricted by  because we using the

empirical risk on both the original dataset  and the ghost . The question now is

what is the maximum size of a restricted hypothesis space? The answer is very

simple; we consider a hypothesis to be a new e�ective one if it produces new

labels/values on the dataset samples, then the maximum number of distinct

hypothesis (a.k.a the maximum number of the restricted space) is the maximum

number of distinct labels/values the dataset points can take. A cool feature about

that maximum size is that its a combinatorial measure, so we don’t need to worry

about how the samples are distributed!

S

H H|S

H|S

H

P[ | (h) − (h)| > ] ≤ P [| (h) − (h)| > ]sup
h∈H|S∪S ′

Remp R′
emp

ϵ

2
∣∣H|S∪S ′ ∣∣ Remp R′

emp
ϵ

2

S ∪S ′

S S ′
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For simplicity, we’ll focus now on the case of binary classi�cation, in which 

. Later we’ll show that the same concepts can be extended to both

multiclass classi�cation and regression. In that case, for a dataset with  samples,

each of which can take one of two labels: either -1 or +1, the maximum number of

distinct labellings is .

We’ll de�ne the maximum number of distinct labellings/values on a dataset  of size 

 by a hypothesis space  as the growth function of  given , and we’ll

denote that by . It’s called the growth function because it’s value for a single

hypothesis space  (aka the size of the restricted subspace ) grows as the size

of the dataset grows. Now we can say that:

Notice that we used  because we have two datasets  each with size .

For the binary classi�cation case, we can say that:

But  is exponential in  and would grow too fast for large datasets, which makes

the odds in our inequality go too bad too fast! Is that the best bound we can get on

that growth function?

The VC-Dimension

The  bound is based on the fact that the hypothesis space  can produce all the

possible labellings on the  data points. If a hypothesis space can indeed produce

Y = {−1, +1}

m

2m

S

m H H m

(m)ΔH

H H|S

P[ | (h) − (h)| > ] ≤ (2m)P [| (h) − (h)| > ] (2)sup
h∈H|S∪S ′

Remp R′
emp

ϵ

2
ΔH Remp R′

emp
ϵ

2

2m S,S ′ m

(m) ≤ΔH 2m
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all the possible labels on a set of data points, we say that the hypothesis space

shatters that set.

But can any hypothesis space shatter any dataset of any size? Let’s investigate that

with the binary classi�cation case and the  of linear classi�ers . The

following animation shows how many ways a linear classi�er in 2D can label 3 points

(on the left) and 4 points (on the right).

In the animation, the whole space of possible e�ective hypotheses is swept. For the

the three points, the hypothesis shattered the set of points and produced all the

possible  labellings. However for the four points,the hypothesis couldn’t get

more than 14 and never reached , so it failed to shatter this set of points.

Actually, no linear classi�er in 2D can shatter any set of 4 points, not just that set;

because there will always be two labellings that cannot be produced by a linear

classi�er which is depicted in the following �gure.

H sign(wx+ b)

= 823

= 1624


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From the decision boundary plot (on the right), it’s clear why no linear classi�er can

produce such labellings; as no linear classi�er can divide the space in this way. So it’s

possible for a hypothesis space  to be unable to shatter all sizes. This fact can be

used to get a better bound on the growth function, and this is done using Sauer’s

lemma:

If a hypothesis space  cannot shatter any dataset with size more than ,

then:

This was the other key part of Vapnik-Chervonenkis work (1971), but it’s named after

another mathematician, Norbert Sauer; because it was independently proved by him

around the same time (1972). However, Vapnik and Chervonenkis weren’t completely

H

H k

(m) ≤ ( )ΔH ∑
i=0

k m

i
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left out from this contribution; as that , which is the maximum number of points

that can be shattered by , is now called the Vapnik-Chervonenkis-dimension or the

VC-dimension  of .

For the case of the linear classi�er in 2D, . In general, it can be proved that

hyperplane classi�ers (the higher-dimensional generalization of line classi�ers) in 

space has .

The bound on the growth function provided by sauer’s lemma is indeed much better

than the exponential one we already have, it’s actually polynomial! Using algebraic

manipulation, we can prove that:

Where  refers to the Big-O notation for functions asymptotic (near the limits)

behavior, and  is the mathematical constant.

Thus we can use the VC-dimension as a proxy for growth function and, hence, for the

size of the restricted space . In that case,  would be a measure of the

complexity or richness of the hypothesis space.

The VC Generalization Bound

With a little change in the constants, it can be shown that Heo�ding’s inequality is

applicable on the probability . With that, and by

combining inequalities (1) and (2), the Vapnik-Chervonenkis theory follows:

k

H

dvc H

= 3dvc

R
n

= n+ 1dvc

(m) ≤ ( ) ≤ ≤ O( )ΔH ∑
i=0

k m

i
( )
me

dvc

dvc

mdvc

O

e

H|S dvc

P [| (h) − (h)| > ]Remp R′
emp

ϵ
2

P[ |R(h) − (h)| > ϵ] ≤ 4 (2m) exp(− )sup
h∈H

Remp ΔH

mϵ2

8

https://en.wikipedia.org/wiki/Big_O_notation


4/3/2019 Machine Learning Theory - Part 2: Generalization Bounds

https://mostafa-samir.github.io/ml-theory-pt2/ 18/23

This can be re-expressed as a bound on the generalization error, just as we did

earlier with the previous bound, to get the VC generalization bound:

or, by using the bound on growth function in terms of  as:

R(h) ≤ (h) +Remp

8 ln (2m) + 8 lnΔH
4
δ

m

− −−−−−−−−−−−−−−−−

√

dvc

R(h) ≤ (h) +Remp

8 (ln + 1) + 8 lndvc
2m
dvc

4
δ

m

− −−−−−−−−−−−−−−−−−−

√
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Professor Vapnik standing in front of a white board that has a form of the

VC-bound and the phrase “All your bayes are belong to us”, which is a play

on the broken english phrase found in the classic video game Zero Wing in

a claim that the VC framework of inference is superior to that of Bayesian

inference. [Courtesy of Yann LeCunn].

This is a signi�cant result! It’s a clear and concise mathematical statement that the

learning problem is solvable, and that for in�nite hypotheses spaces there is a �nite

bound on the their generalization error! Furthermore, this bound can be described

in term of a quantity ( ), that solely depends on the hypothesis space and not on

the distribution of the data points!

Now, in light of these results, is there’s any hope for the memorization hypothesis?

It turns out that there’s still no hope! The memorization hypothesis can shatter any

dataset no matter how big it is, that means that its  is in�nite, yielding an in�nite

bound on  as before. However, the success of linear hypothesis can now

be explained by the fact that they have a �nite  in . The theory is now

consistent with the empirical observations.

Distribution-Based Bounds

The fact that  is distribution-free comes with a price: by not exploiting the

structure and the distribution of the data samples, the bound tends to get loose.

Consider for example the case of linear binary classi�ers in a very higher n-

dimensional feature space, using the distribution-free  means that the

bound on the generalization error would be poor unless the size of the dataset  is

dvc

dvc

R( )hmem

= n+ 1dvc R
n

dvc

= n+ 1dvc

N

https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us
https://en.wikipedia.org/wiki/Bayesian_inference
http://yann.lecun.com/ex/fun/
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also very large to balance the e�ect of the large . This is the good old curse of

dimensionality we all know and endure.

However, a careful investigation into the distribution of the data samples can bring

more hope to the situation. For example, For data points that are linearly separable,

contained in a ball of radius , with a margin  between the closest points in the two

classes, one can prove that for a hyperplane classi�er:

It follows that the larger the margin, the lower the  of the hypothesis. This is

theoretical motivation behind Support Vector Machines (SVMs) which attempts

to classify data using the maximum margin hyperplane. This was also proved by

Vapnik and Chervonenkis.

One Inequality to Rule Them All

Up until this point, all our analysis was for the case of binary classi�cation. And it’s

indeed true that the form of the vc bound we arrived at here only works for the

binary classi�cation case. However, the conceptual framework of VC (that is:

shattering, growth function and dimension) generalizes very well to both multi-class

classi�cation and regression.

Due to the work of Natarajan (1989), the Natarajan dimension is de�ned as a

generalization of the VC-dimension for multiple classes classi�cation, and a bound

similar to the VC-Bound is derived in terms of it. Also, through the work of Pollard

(1984), the pseudo-dimension generalizes the VC-dimension for the regression

case with a bound on the generalization error also similar to VC’s.

dvc

R ρ

≤ ⌈ ⌉dvc
R2

ρ2

dvc

https://en.wikipedia.org/wiki/Curse_of_dimensionality
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There is also Rademacher’s complexity, which is a relatively new tool (devised in the

2000s) that measures the richness of a hypothesis space by measuring how well it

can �t to random noise. The cool thing about Rademacher’s complexity is that it’s

�exible enough to be adapted to any learning problem, and it yields very similar

generalization bounds to the other methods mentioned.

However, no matter what the exact form of the bound produced by any of these

methods is, it always takes the form:

where  is a function of the hypothesis space complexity (or size, or richness), 

the size of the dataset, and the con�dence  about the bound. This inequality

basically says the generalization error can be decomposed into two parts: the

empirical training error, and the complexity of the learning model.

This form of the inequality holds to any learning problem no matter the exact form of

the bound, and this is the one we’re gonna use throughout the rest of the series to

guide us through the process of machine learning.
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R(h) ≤ (h) + C(|H|,N , δ)Remp

C N

1 − δ

https://mostafa-samir.github.io/ml-theory-pt1
https://mostafa-samir.github.io/ml-theory-pt3


4/3/2019 Machine Learning Theory - Part 2: Generalization Bounds

https://mostafa-samir.github.io/ml-theory-pt2/ 22/23

Previous Index Next

Share

  

Author

Mostafa Samir
Wandering in a lifelong journey seeking after truth.

mostafa.3210@gmail.com

Comments

©2016 Mostafa Samir     - Theme By Willian Justen

https://mostafa-samir.github.io/ml-theory-pt1
https://mostafa-samir.github.io/ml-theory-pt3
https://twitter.com/intent/tweet?text=%22Machine%20Learning%20Theory%20-%20Part%202:%20Generalization%20Bounds%22%20https://mostafa-samir.github.io/ml-theory-pt2/%20via%20@M0stafa_Samir&hashtags=MachineLearning,AI,Statistics,
https://www.facebook.com/sharer/sharer.php?u=https://mostafa-samir.github.io/ml-theory-pt2/
https://plus.google.com/share?url=https://mostafa-samir.github.io/ml-theory-pt2/
https://plus.google.com/+/posts
mailto:mostafa.3210@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://github.com/willianjusten/will-jekyll-template


4/3/2019 Machine Learning Theory - Part 2: Generalization Bounds

https://mostafa-samir.github.io/ml-theory-pt2/ 23/23


