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TOWARDS NATURAL LANGUAGE UNDERSTANDING




UNDERSTANDING TIME IN TEXT

= Understanding time is key to understanding events

o Timeline construction (e.g., news stories, clinical records), time-slot
filling, Q&A, causality analysis, pattern discovery, etc.

= Applications depend on two fundamental tasks

o Time expression extraction and normalization

= “yesterday”—>2017-09-09

“Time” that is expressed explicitly

= “Thursday after labor day” - 2017-08-31
= 2 time expressions in every 100 tokens (in TempEval3 datasets)

o Temporal relation extraction

“Time” that is expressed implicitly

= “A” happens BEFORE/AFTER “B”
= 12 temporal relations in every 100 tokens (in TempEval3 datasets)
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GRAPH REPRESENTATION OF TEMPORAL RELATIONS

= .. In Los Angeles that lesson was brought home today when tons
of earth cascaded down a hillside, ripping two houses from their
foundations. No one was hurt, but firefighters ordered the
evacuation of nearby homes and said they'll monitor the shifting
ground until March 23",

monitor

ripping

Five Relation
types:

Before; After;
Include; Included;
equal

ordered

cascaded

mp 5EFORE = INCLUDED
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CHALLENGE |: STRUCTURE

= Structure of a temporal graph [Bramsen et al’06; Chambers & Jurafsky’08| Do et. al.’12]
o Symmetry: “A BEFORE B”—>”B AFTER A”
o Transitivity: “A BEFORE B” + “B BEFORE C”—>"A BEFORE C”

0 Relations are highly interrelated, but existing methods learn models by
considering a single pair at a time.

Expectation
Existing methods

ripping monitor

“ripping”“ vs “hurt”
“ripping”“ vs “cascaded”
“ripping”“ vs “monitor”

* BEFORE =JJ» INCLUDED

cascaded
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=  Problems of existing approaches

CHALLENGE Il: MISSING RELATIONS = Addressing both challenges

_ = Structured Prediction
" Most of the relations are left = Dealing with missing relations

unannotated in the annotation.

Ground Truth Provided Annotation (TempEval3)
ripping

monitor ripping - monitor

hurt

~

ordered ™\ cascaded » ordered

cascaded

wp gcFORE =P INCLUDED e MISSING

= Missing relations arise in three scenarios:
o The annotators did not look at a pair of events (e.g, long distance)
0 The annotators could not decide among multiple options
0 Annotators’ disagreements

= The annotation task is difficult if done at a single event pair level
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[1] Mani et al., ACL2006
EXISTING APPROACHES [2] Chambers et al., ACL2007
[3] Bethard, ClearTK-TimeML: TempEval 2013
[4] Laokulrat et al., SEM2013
[5] Bramsen et al., EMNLP2006

[6] Chambers and Jurafsky, EMNLP2008
Local methods [1-4] [7] Do et al., EMNLP2012

O Learn models or design rules that make pairwise decisions between each
pair of events

0 Global consistency (i.e., symmetry and transitivity) is not enforced

A A
L+l
Inconsistency may exist in local methods > Consistency is enforced via ILP
C B

B — — C

Local methods + Global Inference (L+1) [5-7]

0 Formulate the problem as an integer linear programming (ILP) over the
entire graph, on top of pre-learnt local models

o Consistency guaranteed: structural requirements are added as
declarative constraints to the ILP

0 Performance improved: Local decisions may be corrected via global
consideration
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CHALLENGE I: CONSISTENT DECISION MAKING IS NOT SUFFICIENT

= Neither local methods nor L+| methods account for structural
constraints in the learning phase.

= But information from other events is often necessary.

tons of earth cascaded down a hillside,

Q ...ripping two houses...firefighters ordered the evacuation of nearby
homes... (What’s the temporal relation between ripping and ordered? It’s
difficult to tell.)
= As aresult, (ripping, ordered)=BEFORE cannot be supported given the local

information, resulting in overfitting. .

0o However, observing that (ripping, ordered)=BEFORE actually results from
(ripping, cascaded)=INCLUDED and (cascaded, ordered)=BEFORE, rather
than the local text itself, supports better learning.

ripping ordered cascaded ordered
2 .
|

ripping

\ 4

ordered ripping
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PROPOSED APPROACH: INFERENCE-BASED TRAINING

Local Training (Perceptron) IBT (Structured Perceptron)
For each (x,y) For each (X,Y)
y = sgn(w'x) Y = argmax WTX
fy # 9 rec
Y7 fY #Y
Update w
Update W

= (x,y): feature and label

for a single pair of events " (X,Y):features and labels

. from a whole document
= When learning from

(x,y), the algorithm is
unaware of decisions with
respect to other_pairs.

= Y € C: Enforce consistency
through constraint C.
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PROPOSED APPROACH: INFERENCE-BASED TRAINING

Inference step

o & Event node set, Y temporal label set

I,.(ij) Boolean variable for event pair (i,j) being relation r

Q
o f,-(ij) softmax score of event pair (i,j) being relation r
0

., temporal relations implied by r; and r,

st.Vi,jke€&

[ =arg min Z Z fr@IL-(i))

IjEETEY

PRAGES!
L) = 1, Gi)
)+ 2GR = ) e (10) < 1

—
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Uniqueness

Symmetry

Generalized Transitivity
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PROPOSED APPROACH: INFERENCE-BASED TRAINING

Constraint-Driven Learning
o Make use of unannotated data

Algorithm 2: Constraint-driven learning algo-
rithm

Input: Labeled set £, unlabeled set i/,

weighting coefficient -y

Perform closure on each graph in £

Initialize w, = Learn(L),,Vr €)Y

while convergence criteria not satisfied do
T=0

1
2
3
4
5 foreach x € U do
6
7
8

|y =argmaxyec J(X,y) |

Perform graph closure on y

T=TU{(xy)}
9 w, =YW, + (1 — y)Learn(7),,Vr € Y

10 return {w, },.cy

Chang et al., Guiding semi-supervision with constraint-driven learning. ACL2007.
Chang et al., Structured learning with constrained conditional models. Machine Learning 2012.
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RESULTS (CHALLENGE |)

= When gold related pairs are known (TE3, Task C, Relation only)

Enforcing constraints
only at decision time.

UTTime [1] Local 55.6
AP Local 58.0
AP+ILP L+ 62.2
SP+ILP S+l 69.1

57.4
55.3
61.1
65.5

Enforcing constraints
during learning

56.5
56.6
61.6
67.2

[1] Laokulrat et al., UTTime: Temporal relation classification using deep syntactic features, SEM2013
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HOWEVER, REALISTICALLY

= When gold related pairs are NOT known (TE3, Task C)

ClearTK [1] Local 37.2 33.1 35.1
AP Local 35.3 37.1 36.1
AP+ILP L+l 35.7 35.0 35.3
SP+ILP S+l 32.4 45.2 37.7

= Performance drops significantly.

= Structured learning is not helping as much as previously in the
presence of missing, vague relations

= Existing methods of handling vague relations are ineffective:
o Simply add “vague” to the temporal label set
o Train a classifier or design rules for “vague” vs. “non-vague”

[1] Bethard, ClearTK-TimeML: A minimalist approach to TempEval 2013

I
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T #TLINK | %
CHALLENGE Il: MISSING RELATIONS yPe o

Annotated 582 1.8

. Missi Inferred 2840 8.7
= Most of the relations are left ISSINE | Unknown | 29240 | 895

unannotated
Ground Truth Provided Annotation (TempEval3)

ripping

monitor ripping - monitor

hurt

~

ordered ™\ cascaded » ordered

cascaded

wp gcFORE =P INCLUDED e MISSING

= The annotation task is difficult if done at a single event pair level

= Some of the missing relations can be inferred
0 Saturate the graph via symmetry and transitivity

= The vast majority, cannot

T
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HANDLING VAGUE RELATIONS

= 1. lgnore vague labels during training

Q

Many vague pairs are not really vague but rather pairs that the
annotators failed to look at.

The imbalance between vague and non-vague relations makes it hard to
learn a good vague classifier.

The Vague relation is fundamentally different from other relation types.
= |f (A, B) = BEFORE, then it’s always BEFORE regardless of other events.

= Butif (A, B) = VAGUE, the relation can change if more context is provided.

= 2. Apply post-filtering using KL divergence

For each pair, we have a predicted distribution over possible relations.

Compute the KL divergence of this distribution with the uniform
distribution, and filter out predictions that have a low score.

8; =M _. £ (D) 1og(Mf,, (i), M=#labels, f.-(i) =score for pair i.
High similarity to the uniform distribution, §; < 1, implies unconfident
prediction—=> change decision to Vague.

=R
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RESULTS (CHALLENGE 1)

= When gold related pairs are NOT known (TE3, Task C)
= Apply the post-filtering method proposed above

ClearTK [1] Local 37.2 33.1 35.1
AP Local 35.3 37.1 36.1
AP+ILP L+ 35.7 35.0 35.3
SP+ILP S+l 32.4 45.2 37.7

[1] Bethard, ClearTK-TimeML: A minimalist approach to TempEval 2013
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OVERALL RESULTS

TempEval3 dataset is known to suffer from TLINK sparsity issues.

Timebank-dense is another dataset with much denser TLINK
annotations.

Significant improvement over CAEVO, the previousely best
system on Timebank-dense.

ClearTK [1] Local 46.04 20.90 28.74
CAEVO [2] L+l 54.17 39.49 45.68
SP+ILP S+l 45.34 48.68 46.95
CoDL+ILP S+l 45.57 51.89 48.53

[1] Bethard, ClearTK-TimeML: A minimalist approach to TempEval 2013
[2] Chambers et al., Dense event ordering with a multi-pass architecture. TACL 2014

I
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CONCLUSION

Thanks

= |dentifying Temporal relations between events is a highly

structured task
o This results also in low quality annotation (vague relations)

= This work shows that
0 Using structured information during learning is important

O The structure can be exploited in an unsupervised way (via CoDL) to

further improve results

o Vagueness is the result of lack of information rather than a concrete

relation. KL-driven post-filtering is shown to be an effective way to treat

vague relations.

= Alot more work is needed on temporal reasoning from text
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