

A model for information summarization, and some basic results

Eric Graves

ARL

Qiang Ning

UIUC

Prithwish Basu

Raytheon

July 8, 2019

- Derive model for summarizer.
- Present basic results for summarizer.
- Discuss how results are achieved.

Past Work

- Y. Lin, G. Cao, J. Gao, and J.-Y. Nie, "An information-theoretic approach to automatic evaluation of summaries," in 2006 N.A.A.C.L.-H.L.T.
- H. Lin and J. Bilmes, "Multi-document summarization via budgeted maximization of submodular functions," in 2010 N.A.A.C.L-H.L.T.
- H. Lin and J. Bilmes, "Learning mixtures of submodular shells with application to document summarization," in 2012 U.A.I.
- A. See, P. J. Liu, and C. D. Manning, "Get to the point: Summarization with pointer-generator networks," in 2017 A.M.A.C.L.
- S. Gehrmann, Y. Deng, and A. Rush, "*Bottom-up abstractive summa-rization*," in 2018 E.M.N.L.P.
- ... and many more

Phenomena	
High winds	\checkmark
High UV index	\checkmark
Heavy Rain	\checkmark
Snow	
Low visibility	\checkmark
Smog	
Hurricane	\checkmark

Weather Report

PhenomenaHigh UV index✓Hurricane✓

Weather Summary

Phenomena	
High winds	$\overline{}$
High UV index	\checkmark
Heavy Rain	\checkmark
Snow	
Low visibility	\checkmark
Smog	
Hurricane	\checkmark

Phenomena	
High winds	\checkmark
High UV index	\checkmark
Heavy Rain	\checkmark
Snow	
Low visibility	\checkmark
Smog	
Hurricane	\checkmark

Phenomena		or, if LA	Phenomena	
High UV index	\checkmark	-	High UV index	\checkmark
Hurricane	\checkmark		Smog	

Is this just compression/rate distortion?

High UV index	\checkmark
Heavy Rain	√
Snow	
Low visibility	√
Smog	
Hurricane	√

Phenomena		or, if LA	Phenomena	
High UV index	\checkmark		High UV index	\checkmark
Hurricane	\checkmark		Smog	

Is this just compression/rate distortion?

Yes

High UV index	`
Heavy Rain	•
Snow	
Low visibility	•
Smog	
Hurricane	,

Goal

Minimize $\mathbb{E}[d(T, S)]$, for some distortion function^{*} d, between the report, T, and summary, S, subject to some restrictions on how the summary is generated.

Summarizer Restrictions

PhenomenaHigh UV index \checkmark Smog \checkmark Hurricane \checkmark

Summarizer introduces erasures

Phenomena High UV index ✓ Smog Hurricane

Goal

Minimize $\mathbb{E}[d(T, S)]$, for some distortion function^{*} d, between the report, T, and summary, $S \subset T$.

Summaries should answer these questions.

Report

Answers are deterministic function of report.

Can I bike to school?

Should I wear multiple layers?

Should I board up my house?

Answers are deterministic function of report.

Can I bike to school?
If {Heavy Rain}
$$\cup$$
 { High Winds
and
Low visibility } \cup {Snow} \cup {Hurricane}
then **NO**.

Otherwise YES.

Answer depends on to which sets the report belongs.

Report \rightarrow \swarrow Can I bike to school? Yes if $T \in W_1$, No if $T \in W_1^c$ Should I wear multiple layers? Yes if $T \in W_2$, No if $T \in W_2^c$ Should I board up my house? Yes if $T \in W_3$, No if $T \in W_3^c$

Cost c(t, W) represents importance summary convey $t \in W$.

$d(t, s) = \sum_{\mathcal{W}: t \in \mathcal{W}} c(t, \mathcal{W}) \cdot \text{ambiguity penalty}(\mathcal{W}|s)$

Summary

$i_s(\cdot)$ models user's estimated probability of report \cdot given summary *s*.

Can I bike to school? Yes ~ $i_{S}(W_{1})$, No ~ $i_{S}(W_{1}^{c})$ Should I wear multiple layers? Yes ~ $i_{S}(W_{2})$, No ~ $i_{S}(W_{2}^{c})$ Should I board up my house? Yes ~ $i_{S}(W_{3})$, No ~ $i_{S}(W_{3}^{c})$

$$i_{s}(\mathcal{W}) = \Pr\left(T \in \mathcal{W} | s \subset T\right) = rac{p_{T}(\mathcal{W} \cap \mathcal{T}(s))}{p_{T}(\mathcal{T}(s))}$$

Summary
$$\rightarrow$$

 \swarrow Can I bike to school?
Yes $\sim i_{\mathcal{S}}(\mathcal{W}_1)$, No $\sim i_{\mathcal{S}}(\mathcal{W}_1^c)$
Should I wear multiple layers?
Yes $\sim i_{\mathcal{S}}(\mathcal{W}_2)$, No $\sim i_{\mathcal{S}}(\mathcal{W}_2^c)$
Should I board up my house?
Yes $\sim i_{\mathcal{S}}(\mathcal{W}_3)$, No $\sim i_{\mathcal{S}}(\mathcal{W}_3^c)$

Use *f*-divergence to measure distance, variational distance gives

ambiguity penalty(W|s) = 1 – $i_s(W)$

$$d(t, s) = \sum_{\mathcal{W}: t \in \mathcal{W}} c(t, \mathcal{W}) (1 - i_s(\mathcal{W}))$$
$$= \sum_{\mathcal{W}: t \in \mathcal{W}} c(t, \mathcal{W}) \left(1 - \frac{p_T(\mathcal{W} \cap \mathcal{T}(s))}{p_T(\mathcal{T}(s))} \right)$$

Goal

Minimize $\mathbb{E}[d(T, S)]$ *, where*

$$d(t,s) = \sum_{\mathcal{W}:t\in\mathcal{W}} c(t,\mathcal{W}) \left(1 - \frac{p_T(\mathcal{W} \cap \mathcal{T}(s))}{p_T(\mathcal{T}(s))}\right),$$

between the report, T, and summary, $S \subset T$.

Goal

Minimize $\mathbb{E}[d(T, S)]$ *, where*

$$d(t, s) = \sum_{\mathcal{W}: t \in \mathcal{W}} c(t, \mathcal{W}) \left(1 - \frac{\rho_{\mathcal{T}}(\mathcal{W} \cap \mathcal{T}(s))}{\rho_{\mathcal{T}}(\mathcal{T}(s))} \right),$$

between the report, T, and summary, $S \subset T$.

Goal (Universal Summarization) *Minimize*

$$\int_{\mathcal{P}(\mathcal{T})} \sum_{t^n} \prod_{i=1}^n p_{\mathcal{T}}(t_i) \sum_{\mathcal{W}: t_1 \in \mathcal{W}} c(t_1, \mathcal{W}) \left(1 - \frac{p_{\mathcal{T}}(\mathcal{W} \cap \mathcal{T}(s))}{p_{\mathcal{T}}(\mathcal{T}(s))} \right) \mathrm{d}r$$

where $\frac{\mathrm{d}r}{\mathrm{d}\rho_{\mathcal{T}}}$ is constant and $\int_{\mathcal{P}(\mathcal{T})} \mathrm{d}r = 1$.

Summarizer

$$T_1, T_2^n$$
 Rate Distortion

 Encoder
 Decoder

Theorem (Optimal universal summarizer)

The optimal summarizer chooses the summary $s(t_1|t_2^n)$ that minimizes

$$\sum_{\mathcal{W}: t_1 \in \mathcal{W}} c(t_1, \mathcal{W}) \left[1 - q(\mathcal{W} \cap \mathcal{T}(s)) \eta_{t^n, s}
ight]$$

where

$$\eta_{t^{n},s} = \sum_{k=0}^{\infty} \frac{(n+|\mathcal{T}|+k-\pi(\mathcal{T}(s)|t^{n})-2)!(n+|\mathcal{T}|)!}{(n+|\mathcal{T}|+k)!(n+|\mathcal{T}|-\pi(\mathcal{T}(s)|t^{n})-2)!},$$

$$q(a) = \frac{\pi(a|t^{n})+1}{n+|\mathcal{T}|}.$$
 (1)

Calculate

by writing p_T as a $|\mathcal{T}|$ -dimensional vector, using taylor's theorem, and then applying $\int_0^y (y-x)^a x^b \, \mathrm{d}x = \frac{a!b!}{(a+b+1)!} y^{a+b+1}$ recursively.

Goal (Universal Summarization)

Minimize

$$\int_{\mathcal{P}(\mathcal{T})} \sum_{t^n} \prod_{i=1}^n p_{\mathcal{T}}(t_i) \sum_{\mathcal{W}: t_1 \in \mathcal{W}} c(t_1, \mathcal{W}) \left(1 - \frac{p_{\mathcal{T}}(\mathcal{W} \cap \mathcal{T}(s))}{p_{\mathcal{T}}(\mathcal{T}(s))}\right) dr$$

where
$$\frac{\mathrm{d}r}{\mathrm{d}p_{T}}$$
 is constant and $\int_{\mathcal{P}(T)} \mathrm{d}r = 1$.

Lemma

For positive integers b, a such that $1 \le b < b + 2 \le a$,

$$\frac{a+1}{a-b} < \sum_{y=0}^{\infty} \frac{(b+y)!a!}{(a+y)!b!} \le \frac{a+1}{a-b} \left(1 + \varepsilon(a-b)\right)$$

where

$$\varepsilon(x) = 3 \frac{1 + \ln(x)}{x} + 4e^{\frac{1}{12}} \cdot 2^{-x/2}.$$

Theorem

The (nearly) optimal summarizer chooses the summary $s(t_1|t_2^n)$ that minimizes

$$\sum_{\mathcal{W}: t_1 \in \mathcal{W}} c(t_1, \mathcal{W}) \left[1 - \frac{q(\mathcal{W} \cap \mathcal{T}(s))}{\hat{q}(\mathcal{T}(s))} \right]$$

where

$$q(a) = rac{\pi(a|t^n) + 1}{n + |\mathcal{T}|}, \quad \hat{q}(a) = egin{cases} rac{\pi(a|t^n) + 2}{n + |\mathcal{T}| + 1} & \textit{if } a = t_1 \ rac{\pi(a|t^n) + 2}{n + |\mathcal{T}| + 1} & \textit{else} \end{cases}.$$

Any questions?