
Partial Or Complete, That’s The Question
Qiang Ning1, Hangfeng He2, Chuchu Fan1, Dan Roth1,2

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
2Department of Computer and Information Science, University of Pennsylvania

References

[ToC’91] G. Brightwell and P. Winkler. Counting linear extensions is #p-complete. [CoNLL’00] TK Sang 
and S. Buchholz. Introduction to the CoNLL-2000 shared task: Chunking. [NIPS’01] V. Punyakanok
and D. Roth. The use of classifiers in sequential inference. [LREC’02] P. Kingsbury and M. Palmer. 
From Treebank to PropBank. [CoNLL’05] X. Carreras and L. Marquez. Introduction to the CoNLL-2005 
shared tasks: Semantic role labeling. [ACL’07] MW Chang, L. Ratinov, and D. Roth. Guiding semi-
supervision with constraint-driven learning. [ACL’18a] Q. Ning, Z. Feng, H. Wu, and D. Roth. Joint 
reasoning for temporal and causal relations. [ACL’18b] Q. Ning, H. Wu, and D. Roth. A multi-axis 
annotation scheme for event temporal relations. [CVPR’18] J. Choi, J. Krishnamurthy, A. Kembhavi, 
and A. Farhadi. Structured set matching networks for one-short part labeling. [EMNLP’18] Q. Ning, B. 
Zhou, Z. Feng, H. Peng, and D. Roth. CogCompTime: A tool for understanding time in natural 
language. [LREC’18] D. Khashabi et al. CogCompNLP: Your swiss army knife for NLP. [*SEM’18] Q. 
Ning, Z. Yu, C. Fan, and D. Roth. Exploiting partially annotated data for temporal relation 
extraction.

Acknowledgement

The Allen Institute for Artificial Intelligence 
(allenai.org); the IBM-ILLINOIS Center for 
Cognitive Computing Systems Research (C3SR) 
- a research collaboration as part of the IBM AI 
Horizons Network; Contract HR0011-15-2-0025 
with the US Defense Advanced Research 
Projects Agency (DARPA); the Army Research 
Laboratory (ARL).

Experiments

complete
partial

Seq Tagging
(chunking)

complete

partial

complete
partial

Bipartite Graph
(semantic role classification)

complete

partial

complete
partial

complete

partial

Chain
(temporal relation extraction)

Motivation
Structure: a set of variables that are not independent (mathematical definition shown in Sec. “Theory”).
A common perception: “partial” data are of low quality and should be avoided in data collection.
This paper challenges it and provides a more principled understanding for “partial”.
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Motivation: if we annotate a structure only partially, the remaining part is constrained to a smaller space; that 
is, some “information” of the remaining part has been explained by existing annotations. This is a benefit of 
“partial” that is overlooked previously [*SEM’18].

Background

Many learning tasks are structured. Considering the structure in 
the learning/prediction phase leads to structured 
learning/prediction. However, the effect of structure on data 
collection has received less attention.
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This Paper

This paper aims to provide a better (both theoretical and 
empirical) understanding of the role of structure in data 
collection for structured tasks.

Approach: Partial Or Complete

To study the effect of structure on data collection, we 
investigate two data collection paradigms: 
• Complete: complete as many structures as possible; the cost 

is leaving some structures empty
• Early stopping: evenly distribute the annotation budget to all 

structures; the cost is only getting partial annotations
We train two systems accordingly and compare their 
performances on the same test set.
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Algorithm: CoDL & SSPAN

CoDL: constraint-driven learning; can be seen as “structured 
self-learning” [ACL’07]
SSPAN: structured self-learning with partial annotations; can be 
seen as a straightforward extension of CoDL [*SEM’18]

The SSPAN Algorithm

Input: 𝒯 = 𝒙+, 𝒚+ +.&
/ , 𝒫 = 𝒙+, 𝒂+ +./1&

/12

1. Initialize ℋ = 𝐿𝐸𝐴𝑅𝑁 𝒯
2. While convergence not reached, do

1) 9𝒫 = ∅
2) Foreach 𝒙+, 𝒂+ ∈ 𝒫 do

i. >𝒚+ = 𝐼𝑁𝐹𝐸𝑅𝐸𝑁𝐶𝐸 𝒙+;ℋ , s.t.
>𝒚+ ∈ 𝐶(𝒴E)
G𝑦+,I = 𝑎+,I, ∀𝑎+,I ≠⊓⭐

ii. 9𝒫 = 9𝒫 ∪ 𝒙+, >𝒚+
3) ℋ = 𝐿𝐸𝐴𝑅𝑁 𝒯 + 9𝒫

3. Return ℋ

SSPAN is conceptually a hard-EM algorithm for structured 
learning tasks. Without ⭐, SSPAN goes back to CoDL.

Theory

𝐼P − 𝐼PR&

Structure: a vector of 𝑑 random variables: 𝑌 =
𝑌&, 𝑌U, … , 𝑌E ∈ 𝐶 ℒE ⊆ ℒE, where ℒ is the label set.

Two simple cases:
q When the variables are independent:𝐶 ℒE = ℒE

q When the structure is so “strong” that it requires all variables to share the 
same label: 𝐶 ℒE = { ℓ&, ℓ&, … , ℓ& , ℓU, ℓU, … , ℓU , … , [ℓ ℒ , ℓ ℒ , … , ℓ|ℒ|}

Complete annotation: All variables are labeled and a 
unique point in 𝑪 𝓛𝒅 is determined.
Partial annotation: A subset of 𝐶 ℒE is determined, 
which contains the “true” structure. 

q Let 𝒇𝒌 be the size of the feasible subset if 𝑘 out of 𝑑
variables are labeled. 

q 𝑓% = 𝐶 ℒE ≥ 𝑓& ≥ 𝑓U ≥ ⋯ ≥ 𝑓E = 1
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Or

1à3à2à4Partial order

𝒇𝒌 = 𝟐

Define: 𝑰𝒌 ≜ 𝐥𝐨𝐠 |𝑪(𝓛𝒅)| − 𝑬[𝐥𝐨𝐠 𝒇𝒌]
q Measures how much of 𝐶 ℒE has been disqualified

by 𝑘 labels. 

Define: A 𝒌-partial annotation 𝐴P is a vector of random 
variables 𝐴P = 𝐴P,&, 𝐴P,U, … , 𝐴P,E ∈ ℒ ∪⊓ E, where ⊓ is a 
special character for no label yet, s.t.

q ∑+.&E 𝕀(𝐴P,+ ≠⊓) = 𝑘
q 𝑃 𝑌|𝐴P = 𝑎P = 𝑃(𝑌|𝑌I = 𝑎P,I, 𝑗 ∈ 𝒥), where 𝒥 = 𝑗: 𝑎P,I ≠⊓
q 𝐴P means k variables in 𝑌 are correctly labeled

Theorem: 𝐼P is the mutual information between 𝑌 and 
𝐴P when both 𝑌 and the 𝑘 variables labeled in 𝐴P
follow uniform distributions.

Complete annotationNo annotation

Chain structure in ranking problems:
q Linear chain with a transitivity constraint. 
q When 𝑘 out of 𝑑 comparisons are given, the structure is a partial 

order.
q 𝑓P: # of linear extensions of these partial orders; need simulations 

to estimate 𝐼P [ToC’91].

Bipartite graph structure in assignment problems:
q Assign 𝑑 agents to 𝑑′ tasks (w.l.o.g, 𝑑 < 𝑑x) such that each agent 

handles exactly one task, and each task can only be handled 
by at most one agent. 

q When 𝑘 out of 𝑑 agents are assigned, we need to assign the 
remaining 𝑑x − 𝑘 tasks to 𝑑 − 𝑘 agents.

q 𝐼P = log E|!
E|RP !

Sequence tagging problems: 
q Shallow Parsing, NER, etc., are key examples. 
q O cannot be immediately followed by I.
q No closed-form solution to 𝑰𝒌; need dynamic programming 

simulations.

Implications of the curves above:
q Diminishing return of new labels
q Better to annotate a structure partially than 

completely
q The slope may be an indicator for the strengths of 

structures

Results:
q Partial > Complete
q The stronger a 

structure, the more 
improvement from 
partial.

Conclusion

This paper provides a unique view of structured annotations: it is 
the reduction in the uncertainty of a target structure 𝑌, by a 
random process 𝐴 representing the annotation process.
q Theoretically, “partial” provides more information
q Empirically, “partial” leads to improved performance on 

three very different tasks
In general, we argue that any signal that has non-zero mutual 
information with 𝑌 can be viewed as “annotation”.
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