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Abstract

Identifying temporal relations between
events is an essential step towards nat-
ural language understanding. However,
the temporal relation between two events
in a story depends on, and is often dic-
tated by, relations among other events.
Consequently, effectively identifying tem-
poral relations between events is a chal-
lenging problem even for human annota-
tors. This paper suggests that it is im-
portant to take these dependencies into ac-
count while learning to identify these re-
lations and proposes a structured learning
approach to address this challenge. As a
byproduct, this provides a new perspective
on handling missing relations, a known is-
sue that hurts existing methods. As we
show, the proposed approach results in sig-
nificant improvements on the two com-
monly used data sets for this problem.

1 Introduction

Understanding temporal information described in
natural language text is a key component of nat-
ural language understanding (Mani et al., 2006;
Verhagen et al., 2007; Chambers et al., 2007;
Bethard and Martin, 2007) and, following a se-
ries of TempEval (TE) workshops (Verhagen et al.,
2007, 2010; UzZaman et al., 2013), it has drawn
increased attention. Time-slot filling (Surdeanu,
2013; Ji et al., 2014), storyline construction (Do
et al., 2012; Minard et al., 2015), clinical narra-
tives processing (Jindal and Roth, 2013; Bethard
et al., 2016), and temporal question answering
(Llorens et al., 2015) are all explicit examples of
temporal processing.

The fundamental tasks in temporal process-
ing, as identified in the TE workshops, are 1)
time expression (the so-called “timex”) extraction

and normalization and 2) temporal relation (also
known as TLINKs (Pustejovsky et al., 2003a)) ex-
traction. While the first task has now been well
handled by the state-of-the-art systems (Heidel-
Time (Strötgen and Gertz, 2010), SUTime (Chang
and Manning, 2012), IllinoisTime (Zhao et al.,
2012), NavyTime (Chambers, 2013), UWTime
(Lee et al., 2014), etc.) with end-to-end F1 scores
being around 80%, the second task has long been
a challenging one; even the top systems only
achieved F1 scores of around 35% in the TE work-
shops.

The goal of the temporal relation task is to gen-
erate a directed temporal graph whose nodes rep-
resent temporal entities (i.e., events or timexes)
and edges represent the TLINKs between them.
The task is challenging because it often re-
quires global considerations – considering the en-
tire graph, the TLINK annotation is quadratic in
the number of nodes and thus very expensive, and
an overwhelming fraction of the temporal relations
are missing in human annotation. In this paper,
we propose a structured learning approach to tem-
poral relation extraction, where local models are
updated based on feedback from global inferences.
The structured approach also gives rise to a semi-
supervised method, making it possible to take ad-
vantage of the readily available unlabeled data. As
a byproduct, this approach further provides a new,
effective perspective on handling those missing re-
lations.

In the common formulations, temporal relations
are categorized into three types: the E-E TLINKs
(those between a pair of events), the T-T TLINKs
(those between a pair of timexes), and the E-T
TLINKs (those between an event and a timex).
While the proposed approach can be generally ap-
plied to all three types, this paper focuses on the
majority type, i.e., the E-E TLINKs. For exam-
ple, consider the following snippet taken from the



training set provided in the TE3 workshop. We
want to construct a temporal graph as in Fig. 1 for
the events in boldface in Ex1.

Ex1 . . . tons of earth cascaded down a hillside,
ripping two houses from their foundations.
No one was hurt, but firefighters ordered the
evacuation of nearby homes and said they’ll
monitor the shifting ground.. . .

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED

Figure 1: The desired event temporal graph for Ex1. Re-
verse TLINKs such as hurt is after ripping are omitted for
simplicity.

As discussed in existing work (Verhagen, 2004;
Bramsen et al., 2006; Mani et al., 2006; Chambers
and Jurafsky, 2008), the structure of a temporal
graph is constrained by some rather simple rules:

1. Symmetry. For example, if A is before B, then
B must be after A.

2. Transitivity. For example, if A is before B and
B is before C, then A must be before C.

This particular structure of a temporal graph (es-
pecially the transitivity structure) makes its nodes
highly interrelated, as can be seen from Fig. 1. It
is thus very challenging to identify the TLINKs
between them, even for human annotators: The
inter-annotator agreement on TLINKs is usually
about 50%-60% (Mani et al., 2006). Fig. 2 shows
the actual human annotations provided by TE3.
Among all the ten possible pairs of nodes, only
three TLINKs were annotated. Even if we only
look at main events in consecutive sentences and
at events in the same sentence, there are still quite
a few missing TLINKs, e.g., the one between hurt
and cascaded and the one between monitor and
ordered.

Early attempts by Mani et al. (2006); Chambers
et al. (2007); Bethard et al. (2007); Verhagen and
Pustejovsky (2008) studied local methods – learn-
ing models that make pairwise decisions between
each pair of events. State-of-the-art local meth-
ods, including ClearTK (Bethard, 2013), UTTime

cascaded

hurt

ripping

ordered

monitor

BEFORE INCLUDED BEFORE NO RELATION

Figure 2: The human-annotation for Ex1 provided in TE3,
where many TLINKs are missing due to the annotation diffi-
culty. Solid lines: original human annotations. Dotted lines:
TLINKs inferred from solid lines. Dashed lines: missing re-
lations.

(Laokulrat et al., 2013), and NavyTime (Cham-
bers, 2013), use better designed rules or more fea-
tures such as syntactic tree paths and achieve bet-
ter results. However, the decisions made by these
(local) models are often globally inconsistent (i.e.,
the symmetry and/or transitivity constraints are
not satisfied for the entire temporal graph). Integer
linear programming (ILP) methods (Roth and Yih,
2004) were used in this domain to enforce global
consistency by several authors including Bram-
sen et al. (2006); Chambers and Jurafsky (2008);
Do et al. (2012), which formulated TLINK ex-
traction as an ILP and showed that it improves
over local methods for densely connected graphs.
Since these methods perform inference (“I”) on
top of pre-trained local classifiers (“L”), they are
often referred to as L+I (Punyakanok et al., 2005).
In a state-of-the-art method, CAEVO (Chambers
et al., 2014), many hand-crafted rules and machine
learned classifiers (called sieves therein) form a
pipeline. The global consistency is enforced by
inferring all possible relations before passing the
graph to the next sieve. This best-first architecture
is conceptually similar to L+I but the inference is
greedy, similar to Mani et al. (2007); Verhagen and
Pustejovsky (2008).

Although L+I methods impose global con-
straints in the inference phase, this paper argues
that global considerations are necessary in the
learning phase as well (i.e., structured learning).
In parallel to the work presented here, Leeuwen-
berg and Moens (2017) also proposed a structured
learning approach to extracting the temporal rela-
tions. Their work focuses on a domain-specific
dataset from Clinical TempEval (Bethard et al.,
2016), so their work does not need to address some
of the difficulties of the general problem that our
work addresses. More importantly, they compared
structured learning to local baselines, while we
find that the comparison between structured learn-
ing and L+I is more interesting and important for



understanding the effect of global considerations
in the learning phase. In difference from exist-
ing methods, we also discuss how to effectively
use unlabeled data and how to handle the over-
whelming fraction of missing relations in a princi-
pled way. Our solution targets on these issues and,
as we show, achieves significant improvements on
two commonly used evaluation sets.

The rest of this paper is organized as follows.
Section 2 clarifies the temporal relation types and
the evaluation metric of a temporal graph used in
this paper, Section 3 explains the structured learn-
ing approach in detail, and Section 4 discusses the
practical issue of missing relations. We provide
experiments and discussion in Section 5 and con-
clusion in Section 6.

2 Background

2.1 Temporal Relation Types

Existing corpora for temporal processing often
follows the interval representation of events pro-
posed in Allen (1984), and makes use of 13 rela-
tion types in total. In many systems, vague or none
is also included as another relation type when a
TLINK is not clear or missing. However, current
systems usually use a reduced set of relation types,
mainly due to the following reasons.

1. The non-uniform distribution of all the rela-
tion types makes it difficult to separate low-
frequency ones from the others (see Table 1
in Mani et al. (2006)). For example, rela-
tions such as immediately before or immedi-
ately after barely exist in a corpus compared
to before and after.

2. Due to the ambiguity in natural language,
determining relations like before and imme-
diately before can be a difficult task itself
(Chambers et al., 2014).

In this work, we follow the reduced set of temporal
relation types used in CAEVO (Chambers et al.,
2014): before, after, includes, is included, equal,
and vague.

2.2 Quality of A Temporal Graph

The most recent evaluation metric in TE3, i.e., the
temporal awareness (UzZaman and Allen, 2011),
is adopted in this work. Specifically, let Gsys and
Gtrue be two temporal graphs from the system
prediction and the ground truth, respectively. The

precision and recall of temporal awareness are de-
fined as follows.

P =
|G−sys ∩G+

true|
|G−sys|

, R =
|G−true ∩G+

sys|
|G−true|

where G+ is the closure of graph G, G− is the
reduction of G, “∩” is the intersection between
TLINKs in two graphs, and |G| is the number of
TLINKs in G. The temporal awareness metric
better captures how “useful” a temporal graph is.
For example, if system 1 produces ripping is be-
fore hurt and hurt is before monitor, and system
2 adds ripping is before monitor on top of sys-
tem 1. Since system 2 is simply a transitive clo-
sure of system 1, they would have the same eval-
uation scores. Note that vague relations are usu-
ally considered as non-existing TLINKs and are
not counted during evaluation.

3 A Structured Training Approach

As shown in Fig. 1, the learning problem in tem-
poral relation extraction is global in nature. Even
the top local method in TE3, UTTime (Laokulrat
et al., 2013), only achieved F1=56.5 when pre-
sented with a pair of temporal entities (Task C–
relation only (UzZaman et al., 2013)). Since the
success of an L+I method strongly relies on the
quality of the local classifiers, a poor local classi-
fier is obviously a roadblock for L+I methods. Fol-
lowing the insights from Punyakanok et al. (2005),
we propose to use a structured learning approach
(also called “Inference Based Training” (IBT)).

Unlike the current L+I approach, where local
classifiers are trained independently beforehand
without knowledge of the predictions on neigh-
boring pairs, we train local classifiers with feed-
back that accounts for other relations, by perform-
ing global inference in each round of the learning
process. In order to introduce the structured learn-
ing algorithm, we first explain its most important
component, the global inference step.

3.1 Inference

In a document with n pairs of events, let φi ∈ X ⊆
Rd be the extracted d-dimensional feature and
yi ∈ Y be the temporal relation for the i-th pair
of events, i = 1, 2, . . . , n, where Y = {rj}6j=1

is the label set for the six temporal relations we
use. Moreover, let x = {φ1, . . . , φn} ∈ X n and
y = {y1, . . . , yn} ∈ Yn be more compact rep-
resentations of all the features and labels in this



document. Given the weight vector wr of a lin-
ear classifier trained for relation r ∈ Y (i.e., using
the one-vs-all scheme), the global inference step
is to solve the following constrained optimization
problem:

ŷ = arg max
y∈C(Yn)

f(x,y), (1)

where C(Yn) ⊆ Yn constrains the temporal graph
to be symmetrically and transitively consistent,
and f(x,y) is the scoring function:

f(x,y) =

n∑
i=1

fyi(φi) =

n∑
i=1

ew
T
yi
φi∑

r∈Y e
wT

r φi
.

Specifically, fyi(φi) is the probability of the i-th
event pair having relation yi. f(x, y) is simply
the sum of these probabilities over all the event
pairs in a document, which we think of as the con-
fidence of assigning y = {y1, ..., yn} to this doc-
ument and therefore, it needs to be maximized in
Eq. (1).

Note that when C(Yn) = Yn, Eq. (1) can be
solved for each ŷi independently, which is what
the so-called local methods do, but the resulting
ŷ may not satisfy global consistency in this way.
When C(Yn) 6= Yn, Eq. (1) cannot be decou-
pled for each ŷi and is usually formulated as an
ILP problem (Roth and Yih, 2004; Chambers and
Jurafsky, 2008; Do et al., 2012). Specifically, let
Ir(ij) ∈ {0, 1} be the indicator function of rela-
tion r for event i and event j and fr(ij) ∈ [0, 1] be
the corresponding soft-max score. Then the ILP
objective for global inference is formulated as fol-
lows.

Î = argmax
I

∑
ij∈E

∑
r∈Y fr(ij)Ir(ij) (2)

s.t. ΣrIr(ij) = 1
(uniqueness)

, Ir(ij) = Ir̄(ji),
(symmetry)

Ir1(ij) + Ir2(jk)− ΣN
m=1Irm3 (ik) ≤ 1,

(transitivity)

for all distinct events i, j, and k, where E =
{ij | sentence dist(i, j)≤ 1}, r̄ is the reverse of r,
and N is the number of possible relations for r3

when r1 and r2 are true.
Our formulation in Eq. (2) is different from

previous work (Chambers and Jurafsky, 2008;
Do et al., 2012) in two aspects: 1) We re-
strict our event pairs ij to a smaller set E =
{ij | sentence dist(i, j)≤ 1} where pairs that are
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Figure 3: #TLINKs vs sentence distance on the TE3 Plat-
inum dataset. The tail of equal is due to event coreference
and beyond our focus.

more than one sentence away are deleted for com-
putational efficiency and (usually) for better per-
formance. In fact, to make better use of global
constraints, we should have allowed more event
pairs in Eq. (2). However, fr(ij) is usually more
reliable when i and j are closer in text. Many
participating systems in TE3 (UzZaman et al.,
2013) have used this pre-filtering strategy to bal-
ance the trade-off between confidence in fr(ij)
and global constraints. We observe that the strat-
egy fits very well to the existing datasets: As
shown in Fig. 3, annotated TLINKs barely exist
if two events are two sentences away. 2) Previ-
ously, transitivity constraints were formulated as
Ir1(ij) + Ir2(jk) − Ir3(ik) ≤ 1, which is a spe-
cial case when N = 1 and can be understood as
“r1 and r2 determine a single r3”. However, it was
overlooked that, although some r1 and r2 cannot
uniquely determine r3, they can still constrain the
set of labels r3 can take. For example, as shown
in Fig. 4, when r1=before and r2=is included, r3

is not determined but we know that r3 ∈ {before,
is included}1. This information can be easily ex-
ploited by allowing N > 1.

A B

C1

C2
Time

<

Figure 4: When A is before B and B is included in C, A
can either be before C1 or is included in C2. We propose to
incorporate this via the transitivity constraints for Eq. (2).

With these two differences, the optimization
problem (2) can still be efficiently solved us-
ing off-the-shelf ILP packages such as GUROBI

1The transitivity table in Allen (1983) shows two more
possible relations, overlap and immediately before, which are
not in our label set.



(Gurobi Optimization, Inc., 2012).

3.2 Learning
With the inference solver defined above, we pro-
pose to use the structured perceptron (Collins,
2002) as a representative for the inference based
training (IBT) algorithm to learn those weight vec-
tors wr. Specifically, let L = {xk,yk}Kk=1 be the
labeled training set of K instances (usually doc-
uments). The structured perceptron training algo-
rithm for this problem is shown in Algorithm 1.
The Illinois-SL package (Chang et al., 2010) was
used in our experiments for its structured percep-
tron component. In terms of the features used in
this work, we adopt the same set of features de-
signed for E-E TLINKs in Sec. 3.1 of Do et al.
(2012).

In Algorithm 1, Line 6 is the inference step as
in Eq. (1) or (2), which is augmented with a clo-
sure operation on ŷ in the following line. In the
case in which there is only one pair of events in
each instance (thus no structure to take advantage
of), Algorithm 1 reduces to the conventional per-
ceptron algorithm and Line 6 simply chooses the
top scoring label. With a structured instance in-
stead, Line 6 becomes slower to solve, but it can
provide valuable information so that the percep-
tron learner is able to look further at other labels
rather than an isolated pair. For example in Ex1
and Fig. 1, the fact that (ripping,ordered)=before is
established through two other relations: 1) ripping
is an adverbial participle and thus included in cas-
caded and 2) cascaded is before ordered. If (rip-
ping,ordered)=before is presented to a local learn-
ing algorithm without knowing its predictions on
(ripping,cascaded) and (cascaded,ordered), then
the model either cannot support it or overfits it.
In IBT, however, if the classifier was correct in de-
ciding (ripping,cascaded) and (cascaded,ordered),
then (ripping,ordered) would be correct automat-
ically and would not contribute to updating the
classifier.

3.3 Semi-supervised Structured Learning
The scarcity of training data and the difficulty in
annotation have long been a bottleneck for tempo-
ral processing systems. Given the inherent global
constraints in temporal graphs, we propose to per-
form semi-supervised structured learning using
the constraint-driven learning (CoDL) algorithm
(Chang et al., 2007, 2012), as shown in Algo-
rithm 2, where the function “Learn” in Lines 2
and 9 represents any standard learning algorithm

Algorithm 1: Structured perceptron algorithm
for temporal relations

Input: Training set L = {xk,yk}Kk=1,
learning rate λ

1 Perform graph closure on each yk
2 Initialize wr = 0, ∀r ∈ Y
3 while convergence criteria not satisfied do
4 Shuffle the examples in L
5 foreach (x,y) ∈ L do
6 ŷ = arg maxy∈C f(x,y)
7 Perform graph closure on ŷ
8 if ŷ 6= y then
9 wr = wr + λ(

∑
i:yi=r

φi−∑
i:ŷi=r

φi), ∀r ∈ Y

10 return {wr}r∈Y

(e.g., perceptron, SVM, or even structured percep-
tron; here we used the averaged perceptron (Fre-
und and Schapire, 1998)) and subscript “r” means
selecting the learned weight vector for relation
r ∈ Y . CoDL improves the model learned from a
small amount of labeled data by repeatedly gener-
ating feedback through labeling unlabeled exam-
ples, which is in fact a semi-supervised version of
IBT. Experiments show that this scheme is indeed
helpful in this problem.

Algorithm 2: Constraint-driven learning algo-
rithm
Input: Labeled set L, unlabeled set U ,

weighting coefficient γ
1 Perform closure on each graph in L
2 Initialize wr = Learn(L)r, ∀ r ∈ Y
3 while convergence criteria not satisfied do
4 T = ∅
5 foreach x ∈ U do
6 ŷ = arg maxy∈C f(x,y)
7 Perform graph closure on ŷ
8 T = T ∪ {(x, ŷ)}
9 wr = γwr + (1− γ)Learn(T )r,∀ r ∈ Y

10 return {wr}r∈Y

4 Missing Annotations

Since even human annotators find it difficult to an-
notate temporal graphs, many of the TLINKs are
left unspecified by annotators (compare Fig. 2 to
Fig. 1). While some of these missing TLINKs can
be inferred from existing ones, the vast majority
still remain unknown as shown in Table 1. De-



spite the existence of denser annotation schemes
(e.g., Cassidy et al. (2014)), the TLINK annotation
task is quadratic in the number of nodes, and it is
practically infeasible to annotate complete graphs.
Therefore, the problem of identifying these un-
known relations in training and test is a major is-
sue that dramatically hurts existing methods.

Table 1: Categories of E-E TLINKs in the TE3 Platinum
dataset. Among all pairs of events, 98.2% of them are left
unspecified by the annotators. Graph closure can automati-
cally add 8.7%, but most of the event pairs are still unknown.

Type #TLINK %
Annotated 582 1.8

Missing
Inferred 2840 8.7

Unknown 29240 89.5
Total 32662 100

We could simply use these unknown pairs (or
some filtered version of them) to design rules or
train classifiers to identify whether a TLINK is
vague or not. However, we propose to exclude
both the unknown pairs and the vague classifier
from the training process – by changing the struc-
tured loss function to ignore the inference feed-
back on vague TLINKs (see Line 9 in Algorithm 1
and Line 9 in Algorithm 2). The reasons are dis-
cussed below.

First, it is believed that a lot of the unknown
pairs are not really vague but rather pairs that the
annotators failed to look at (Bethard et al., 2007;
Cassidy et al., 2014; Chambers et al., 2014). For
example, (cascaded, monitor) should be annotated
as before but is missing in Fig. 2. It is hard to
exclude this noise in the data during training. Sec-
ond, compared to the overwhelmingly large num-
ber of unknown TLINKs (89.5% as shown in Ta-
ble 1), the scarcity of non-vague TLINKs makes
it hard to learn a good vague classifier. Third,
vague is fundamentally different from the other
relation types. For example, if a before TLINK
can be established given a sentence, then it always
holds as before regardless of other events around
it, but if a TLINK is vague given a sentence, it
may still change to other types afterwards if a
connection can later be established through other
nodes from the context. This distinction empha-
sizes that vague is a consequence of lack of back-
ground/contextual information, rather than a con-
crete relation type to be trained on. Fourth, with-
out the vague classifier, the predicted temporal
graph tends to become more densely connected,
thus the global transitivity constraints can be more
effective in correcting local mistakes (Chambers

and Jurafsky, 2008).
However, excluding the local classifier for

vague TLINKs would undesirably assign non-
vague TLINKs to every pair of events. To handle
this, we take a closer look at the vague TLINKs.
We note that a vague TLINK could arise in two
situations if the annotators did not fail to look at it.
One is that an annotator looks at this pair of events
and decides that multiple relations can exist, and
the other one is that two annotators disagree on
the relation (similar arguments were also made in
Cassidy et al. (2014)). In both situations, the an-
notators first try to assign all possible relations to
a TLINK, and then change the relation to vague if
more than one can be assigned. This human an-
notation process for vague is different from many
existing methods, which either identify the exis-
tence of a TLINK first (using rules or machine-
learned classifiers) and then classify, or directly
include vague as a classification label along with
other non-vague relations.

In this work, however, we propose to mimic
this mental process by a post-filtering method2.
Specifically, we take each TLINK produced by
ILP and determine whether it is vague using its
relative entropy (the Kullback-Leibler divergence)
to the uniform distribution. Let {rm}Mm=1 be the
set of relations that the i-th pair of events can take,
we filter the i-th TLINK given by ILP by:

δi =

M∑
m=1

frm(φi) log (Mfrm(φi)),

where frm(φi) is the soft-max score of rm, ob-
tained by the local classifier for rm. We then com-
pare δi to a fixed threshold τ to determine the
vagueness of this TLINK; we accept its originally
predicted label if δi > τ , or change it to vague oth-
erwise. Using relative entropy here is intuitively
appealing and empirically useful as shown in the
experiments section; better metrics are of course
yet to be designed.

5 Experiments

5.1 Datasets
The TempEval3 (TE3) workshop (UzZaman et al.,
2013) provided the TimeBank (TB) (Pustejovsky
et al., 2003b), AQUAINT (AQ) (Graff, 2002), Sil-
ver (TE3-SV), and Platinum (TE3-PT) datasets,

2Some systems (e.g., TARSQI (Verhagen and Puste-
jovsky, 2008)) employed a similar idea from a different stand-
point, by thresholding TLINKs based on confidence scores.



where TB and AQ are usually for training, and
TE3-PT is usually for testing. The TE3-SV
dataset is a much larger, machine-annotated and
automatically-merged dataset based on multiple
systems, with the intention to see if these “silver”
standard data can help when included in training
(although almost all participating systems saw per-
formance drop with TE3-SV included in training).

Two popular augmentations on TB are the Verb-
Clause temporal relation dataset (VC) and Time-
bankDense dataset (TD). The VC dataset has spe-
cially annotated event pairs that follow the so-
called Verb-Clause structure (Bethard et al., 2007),
which is usually beneficial to be included in train-
ing (UzZaman et al., 2013). The TD dataset
contains 36 documents from TB which were re-
annotated using the dense event ordering frame-
work proposed in Cassidy et al. (2014). The exper-
iments included in this paper will involve the TE3
datasets as well as these augmentations. There-
fore, some statistics on them are shown in Table 2
for the readers’ information.

Table 2: Facts about the datasets used in this paper. The
TD dataset is split into train, dev, and test in the same way as
in Chambers et al. (2014). Note that the column of TLINKs
only counts the non-vague TLINKs, from which we can see
that the TD dataset has a much higher ratio of #TLINKs to
#Events. The TLINK annotations in TE3-SV is not used in
this paper and its number is thus not shown.

Dataset Doc Event TLINK Note
TB+AQ 256 12K 12K Training
VC 132 1.6K 0.9K Training
TD 36 1.6K 5.7K Training
TD-Train 22 1K 3.8K Training
TD-Dev 5 0.2K 0.6K Dev
TD-Test 9 0.4K 1.3K Eval
TE3-PT 20 0.7K 0.9K Eval
TE3-SV 2.5K 81K - Unlabeled

5.2 Baseline Methods

In addition to the state-of-the-art systems, another
two baseline methods were also implemented for
a better understanding of the proposed ones. The
first is the regularized averaged perceptron (AP)
(Freund and Schapire, 1998) implemented in the
LBJava package (Rizzolo and Roth, 2010) and is
a local method. On top of the first baseline, we
performed global inference in Eq.(2), referred to
as the L+I baseline (AP+ILP). Both of them used
the same feature set (i.e., as designed in Do et al.
(2012)) as in the proposed structured perceptron
(SP) and CoDL for fair comparisons. To clarify,

SP and CoDL are training algorithms and their im-
mediate outputs are the weight vectors {wr}r∈Y
for local classifiers. An ILP inference was per-
formed on top of them to yield the final output,
and we refer to it as “S+I” (i.e., structured learn-
ing+inference) methods.

Table 3: Temporal awareness scores on TE3-PT given gold
event pairs. Systems that are significantly better (per McNe-
mar’s test with p < 0.0005) than the previous rows are under-
lined. The last column shows the relative improvement in F1
score over AP-1, which identifies the source of improvement:
5.2% from additional training data, 9.3% (14.5%-5.2%) from
constraints, and 10.4% from structured learning.

Method P R F1 %
UTTime 55.6 57.4 56.5 +5.0
AP-1 56.3 51.5 53.8 0
AP-2 58.0 55.3 56.6 +5.2
AP+ILP 62.2 61.1 61.6 +14.5
SP+ILP 69.1 65.5 67.2 +24.9

5.3 Results and Discussion

5.3.1 TE3 Task C - Relation Only
To show the benefit of using structured learn-
ing, we first tested one scenario where the gold
pairs of events that have a non-vague TLINK were
known priori. This setup was a standard task pre-
sented in TE3, so that the difficulty of detecting
vague TLINKs was ruled out. This setup also
helps circumvent the issue that TE3 penalizes sys-
tems which assign extra labels that do not exist in
the annotated graph, while these extra labels may
be actually correct because the annotation itself
might be incomplete. UTTime (Laokulrat et al.,
2013) was the top system in this task in TE3. Since
UTTime is not available to us, and its performance
was reported in TE3 in terms of both E-E and E-T
TLINKs together, we locally trained an E-T clas-
sifier based on Do et al. (2012) and included its
prediction only for fair comparison.

UTTime is a local method and was trained on
TB+AQ and tested on TE3-PT. We used the same
datasets for our local baseline and its performance
is shown in Table 3 under the name “AP-1”. Note
that the reported numbers below are the temporal
awareness scores obtained from the official evalu-
ation script provided in TE3. We can see that UT-
Time is about 3% better than AP-1 in the absolute
value of F1, which is expected since UTTime in-
cluded more advanced features derived from syn-
tactic parse trees. By adding the VC and TD
datasets into the training set, we retrained our local
baseline and achieved comparable performance to



Table 4: Temporal awareness scores given gold events but with no gold pairs, which show that the proposed S+I methods
outperformed state-of-the-art systems in various settings. The fourth column indicates the annotation sources used, with addi-
tional unlabeled dataset in the parentheses. The “Filters” column shows if the pre-filtering method (Sec. 3.1) or the proposed
post-filtering method (Sec. 4) were used. The last column is the relative improvement in F1 score compared to baseline systems
on line 1, 7, and 11, respectively. Systems that are significantly better than the “*”-ed systems are underlined (per McNemar’s
test with p < 0.0005).

No. System Method Anno. (Unlabeled) Testset Filters P R F1 %
1 ClearTK Local TB, AQ, VC, TD TE3-PT pre 37.2 33.1 35.1 0
2 AP* Local TB, AQ, VC, TD TE3-PT pre 35.3 37.1 36.1 +2.8
3 AP+ILP L+I TB, AQ, VC, TD TE3-PT pre 35.7 35.0 35.3 +0.6
4 SP+ILP S+I TB, AQ, VC, TD TE3-PT pre 32.4 45.2 37.7 +7.4
5 SP+ILP S+I TB, AQ, VC, TD TE3-PT pre+post 33.1 49.2 39.6 +12.8
6 CoDL+ILP S+I TB, AQ, VC, TD (TE3-SV) TE3-PT pre+post 35.5 46.5 40.3 +14.8
7 ClearTK* Local TB, VC TE3-PT pre 35.9 38.2 37.0 0
8 SP+ILP S+I TB, VC TE3-PT pre+post 30.7 47.1 37.2 +0.5
9 CoDL+ILP S+I TB, VC (TE3-SV) TE3-PT pre+post 33.9 45.9 39.0 +5.4

10 ClearTK Local TD-Train TD-Test pre 46.04 20.90 28.74 -
11 CAEVO* L+I TD-Train TD-Test pre 54.17 39.49 45.68 0
12 SP+ILP S+I TD-Train TD-Test pre+post 45.34 48.68 46.95 +3.0
13 CoDL+ILP S+I TD-Train (TE3-SV) TD-Test pre+post 45.57 51.89 48.53 +6.3

UTTime (“AP-2” in Table 3). On top of AP-2,
a global inference step enforcing symmetry and
transitivity constraints (“AP+ILP”) can further im-
prove the F1 score by 9.3%, which is consistent
with previous observations (Chambers and Juraf-
sky, 2008; Do et al., 2012). SP+ILP further im-
proved the performance in precision, recall, and
F1 significantly (per the McNemar’s test (Everitt,
1992; Dietterich, 1998) with p <0.0005), reaching
an F1 score of 67.2%. This meets our expectation
that structured learning can be better when the lo-
cal problem is difficult (Punyakanok et al., 2005).

5.3.2 TE3 Task C
In the first scenario, we knew in advance which
TLINKs existed or not, so the “pre-filtering” (i.e.,
ignoring distant pairs as mentioned in Sec. 3.1 and
“post-filtering” methods were not used when gen-
erating the results in Table 3. We then tested a
more practical scenario, where we only knew the
events, but did not know which ones are related.
This setup was Task C in TE3 and the top sys-
tem was ClearTK (Bethard, 2013). Again, for fair
comparison, we simply added the E-T TLINKs
predicted by ClearTK. Moreover, 10% of the train-
ing data was held out for development. Corre-
sponding results on the TE3-PT testset are shown
in Table 4.

From lines 2-4, all systems see significant drops
in performance if compared with the same entries
in Table 3. It confirms our assertion that how to
handle vague TLINKs is a major issue for this
temporal relation extraction problem. The im-
provement of SP+ILP (line 4) over AP (line 2) was
small and AP+ILP (line 3) was even worse than
AP, which necessitates the use of a better approach

towards vague TLINKs. By applying the post-
filtering method proposed in Sec. 4, we were able
to achieve better performances using SP+ILP (line
5), which shows the effectiveness of this strat-
egy. Finally, by setting U in Algorithm 2 to be
the TE3-SV dataset, CoDL+ILP (line 6) achieved
the best F1 score with a relative improvement over
ClearTK being 14.8%. Note that when using TE3-
SV in this paper, we did not use its annotations
on TLINKs because of its well-known large noise
(UzZaman et al., 2013).

In UzZaman et al. (2013), we notice that the
best performance of ClearTK was achieved when
trained on TB+VC (line 7 is higher than its re-
ported values in TE3 because of later changes in
ClearTK), so we retrained the proposed systems
on the same training set and results are shown on
lines 8-9. In this case, the improvement of S+I
over Local was small, which may be due to the
lack of training data. Note that line 8 was still
significantly different to line 7 per the McNemar’s
test, although there was only 0.2% absolute dif-
ference in F1, which can be explained from their
large differences in precision and recall.

5.3.3 Comparison with CAEVO
The proposed structured learning approach was
further compared to a recent system, a CAscading
EVent Ordering architecture (CAEVO) proposed
in Chambers et al. (2014) (lines 10-13). We used
the same training set and test set as CAEVO in the
S+I systems. Again, we added the E-T TLINKs
predicted by CAEVO to both S+I systems. In
Chambers et al. (2014), CAEVO was reported on
the straightforward evaluation metric including the
vague TLINKs, but the temporal awareness scores



were used here, which explains the difference be-
tween line 11 in Table 4 and what was reported in
Chambers et al. (2014).

ClearTK was reported to be outperformed
by CAEVO on TD-Test (Chambers et al.,
2014), but we observe that ClearTK on line
10 was much worse even than itself on line 7
(trained on TB+VC) and on line 1 (trained on
TB+AQ+VC+TD) due to the annotation scheme
difference between TD and TB/AQ/VC. ClearTK
was designed mainly for TE3, aiming for high pre-
cision, which is reflected by its high precision on
line 10, but it does not have enough flexibility to
cope with two very different annotation schemes.
Therefore, we have chosen CAEVO as the base-
line system to evaluate the significance of the pro-
posed ones. On the TD-Test dataset, all systems
other than ClearTK had better F1 scores compared
to their performances on TE3-PT. This notable dif-
ference (i.e., 48.53 vs 40.3) indicates the better
quality of the dense annotation scheme that was
used to create TD (Cassidy et al., 2014). SP+ILP
outperformed CAEVO and if additional unlabeled
dataset TE3-SV was used, CoDL+ILP achieved
the best score with a relative improvement in F1

score being 6.3%.
We notice that the proposed systems often have

higher recall than precision, and that this is less an
issue on a densely annotated testset (TD-Test), so
their low precision on TE3-PT possibly came from
the missing annotations on TE3-PT. It is still under
investigation how to control precision and recall in
real applications.

6 Conclusion

We develop a structured learning approach to iden-
tifying temporal relations in natural language text
and show that it captures the global nature of this
problem better than state-of-the-art systems do. A
new perspective towards vague relations is also
proved to gain from fully taking advantage of the
structured approach. In addition, the global na-
ture of this problem gives rise to a better way of
making use of the readily available unlabeled data,
which further improves the proposed method. The
improved performance on both TE3-PT and TD-
Test, two differently annotated datasets, clearly
shows the advantage of the proposed method over
existing methods. We plan to build on the notable
improvements shown here and expand this study
to deal with additional temporal reasoning prob-
lems in natural language text.
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