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Abstract

Annotating temporal relations (TempRel) be-
tween events described in natural language is
known to be labor intensive, partly because
the total number of TempRels is quadratic in
the number of events. As a result, only a
small number of documents are typically an-
notated, limiting the coverage of various lexi-
cal/semantic phenomena. In order to improve
existing approaches, one possibility is to make
use of the readily available, partially annotated
data (P as in partial) that cover more docu-
ments. However, missing annotations in P are
known to hurt, rather than help, existing sys-
tems. This work is a case study in exploring
various usages of P for TempRel extraction.
Results show that despite missing annotations,
P is still a useful supervision signal for this
task within a constrained bootstrapping learn-
ing framework. The system described in this
system is publicly available.1

1 Introduction

Understanding the temporal information in natu-
ral language text is an important NLP task (Ver-
hagen et al., 2007, 2010; UzZaman et al., 2013;
Minard et al., 2015; Bethard et al., 2016, 2017). A
crucial component is temporal relation (TempRel;
e.g., before or after) extraction (Mani et al., 2006;
Bethard et al., 2007; Do et al., 2012; Chambers
et al., 2014; Mirza and Tonelli, 2016; Ning et al.,
2017, 2018a,b).

The TempRels in a document or a sentence can
be conveniently modeled as a graph, where the
nodes are events, and the edges are labeled by
TempRels. Given all the events in an instance,
TempRel annotation is the process of manually la-
beling all the edges – a highly labor intensive task
due to two reasons. One is that many edges re-
quire extensive reasoning over multiple sentences

1https://cogcomp.org/page/publication_
view/832

and labeling them is time-consuming. Perhaps
more importantly, the other reason is that #edges
is quadratic in #nodes. If labeling an edge takes 30
seconds (already an optimistic estimation), a typi-
cal document with 50 nodes would take more than
10 hours to annotate. Even if existing annotation
schemes make a compromise by only annotating
edges whose nodes are from a same sentence or
adjacent sentences (Cassidy et al., 2014), it still
takes more than 2 hours to fully annotate a typ-
ical document. Consequently, the only fully an-
notated dataset, TB-Dense (Cassidy et al., 2014),
contains only 36 documents, which is rather small
compared with datasets for other NLP tasks.

A small number of documents may indicate that
the annotated data provide a limited coverage of
various lexical and semantic phenomena, since
a document is usually “homogeneous” within it-
self. In contrast to the scarcity of fully annotated
datasets (denoted by F as in full), there are ac-
tually some partially annotated datasets as well
(denoted by P as in partial); for example, Time-
Bank (Pustejovsky et al., 2003) and AQUAINT
(Graff, 2002) cover in total more than 250 docu-
ments. Since annotators are not required to label
all the edges in these datasets, it is less labor inten-
sive to collect P than to collect F . However, ex-
isting TempRel extraction methods only work on
one type of datasets (i.e., either F or P), without
taking advantage of both. No one, as far as we
know, has explored ways to combine both types of
datasets in learning and whether it is helpful.

This work is a case study in exploring various
usages of P in the TempRel extraction task. We
empirically show that P is indeed useful within
a (constrained) bootstrapping type of learning ap-
proach. This case study is interesting from two
perspectives. First, incidental supervision (Roth,
2017). In practice, supervision signals may not al-
ways be perfect: they may be noisy, only partial,
based on different annotation schemes, or even on
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different (but relevant) tasks; incidental supervi-
sion is a general paradigm that aims at making
use of the abundant, naturally occurring data, as
supervision signals. As for the TempRel extrac-
tion task, the existence of many partially annotated
datasets P is a good fit for this paradigm and the
result here can be informative for future investi-
gations involving other incidental supervision sig-
nals. Second, TempRel data collection. The fact
that P is shown to provide useful supervision sig-
nals poses some further questions: What is the op-
timal data collection scheme for TempRel extrac-
tion, fully annotated, partially annotated, or a mix-
ture of both? For partially annotated data, what
is the optimal ratio of annotated edges to unanno-
tated edges? The proposed method in this work
can be readily extended to study these questions
in the future, as we further discuss in Sec. 5.

2 Existing Datasets and Methods

TimeBank (Pustejovsky et al., 2003) is a classic
TempRel dataset, where the annotators were given
a whole article and allowed to label TempRels be-
tween any pairs of events. Annotators in this setup
usually focus only on salient relations but overlook
some others. It has been reported that many event
pairs in TimeBank should have been annotated
with a specific TempRel but the annotators failed
to look at them (Chambers, 2013; Cassidy et al.,
2014; Ning et al., 2017). Consequently, we cate-
gorize TimeBank as a partially annotated dataset
(P). The same argument applies to other datasets
that adopted this setup, such as AQUAINT (Graff,
2002), CaTeRs (Mostafazadeh et al., 2016) and
RED (O’Gorman et al., 2016). Most existing sys-
tems make use of P , including but not limited to,
(Mani et al., 2006; Bramsen et al., 2006; Cham-
bers et al., 2007; Bethard et al., 2007; Verhagen
and Pustejovsky, 2008; Chambers and Jurafsky,
2008; Denis and Muller, 2011; Do et al., 2012);
this applies also to the TempEval workshops sys-
tems, e.g., (Laokulrat et al., 2013; Bethard, 2013;
Chambers, 2013).

To address the missing annotation issue, Cas-
sidy et al. (2014) proposed a dense annotation
scheme, TB-Dense. Edges are presented one-by-
one and the annotator has to choose a label for
it (note that there is a vague label in case the
TempRel is not clear or does not exist). As a re-
sult, edges in TB-Dense are considered as fully
annotated in this paper. The first system on TB-
Dense was proposed in Chambers et al. (2014).

Two recent TempRel extraction systems (Mirza
and Tonelli, 2016; Ning et al., 2017) also re-
ported their performances on TB-Dense (F) and
on TempEval-3 (P) separately. However, there
are no existing systems that jointly train on both.
Given that the annotation guidelines of F and P
are obviously different, it may not be optimal to
simply treat P and F uniformly and train on their
union. This situation necessitates further investi-
gation as we do here.

Before introducing our joint learning approach,
we have a few remarks about our choice of F and
P datasets. First, we note that TB-Dense is actu-
ally not fully annotated in the strict sense because
only edges within a sliding, two-sentence window
are presented. That is, distant event pairs are in-
tentionally ignored by the designers of TB-Dense.
However, since such distant pairs are consistently
ruled out in the training and inference phase in
this paper, it does not change the nature of the
problem being investigated here. At this point,
TB-Dense is the only fully annotated dataset that
can be adopted in this study, despite the aforemen-
tioned limitation.

Second, the partial annotations in datasets like
TimeBank were not selected uniformly at random
from all possible edges. As described earlier, only
salient and non-vague TempRels (which may often
be those easy ones) are labeled in these datasets.
Using TimeBank as P might potentially create
some bias and we will need to keep this in mind
when analyzing the results in Sec. 4. Recent ad-
vances in TempRel data annotation (Ning et al.,
2018c) can be used in the future to collect both F
and P more easily.

3 Joint Learning on F and P

In this work, we study two learning paradigms that
make use of both F and P . In the first, we simply
treat those edges that are annotated in P as edges
in F so that the learning process can be performed
on top of the union of F and P . This is the most
straightforward approach to using F and P jointly
and it is interesting to see if it already helps.

In the second, we use bootstrapping: we use F
as a starting point and learn a TempRel extraction
system on it (denoted by SF ), and then fill those
missing annotations in P based on SF (thus obtain
“fully” annotated P̃); finally, we treat P̃ as F and
learn from both. Algorithm 1 is a meta-algorithm
of the above.

In Algorithm 1, we consistently use the sparse



Algorithm 1: Joint learning from F and P by
bootstrapping

Input: F , P , Learn, Inference
1 SF = Learn(F)
2 Initialize SF+P = SF
3 while convergence criteria not satisfied do
4 P̃ = ∅
5 foreach p ∈ P do
6 ŷ = Inference(p;SF+P )
7 P̃ = P̃ ∪ {(x, ŷ)}
8 SF+P = Learn(F + P̃)

9 return SF+P

averaged perceptron algorithm as the “Learn”
function. As for “Inference” (Line 6), we fur-
ther investigate two different ways: (i) Look at
every unannotated edge in p ∈ P and use SF+P
to label it; this local method ignores the exist-
ing annotated edges in P and is thus the standard
bootstrapping. (ii) Perform global inference on P
with annotated edges being constraints, which is
a constrained bootstrapping, motivated by the fact
that temporal graphs are structured and annotated
edges have influence on the missing edges: In
Fig. 1, the current annotation for (1, 2) and (2, 3)
is before and vague. We assume that the annota-
tion (2, 3)=vague indicates that the relation cannot
be determined even if the entire graph is consid-
ered. Then with (1, 2)=before and (2, 3)=vague,
we can see that (1, 3) cannot be uniquely de-
termined, but it is restricted to be selected from
{before, vague} rather than the entire label set.
We believe that global inference makes better use
of the information provided by P; in fact, as we
show in Sec. 4, it does perform better than local
inference.

Figure 1: Nodes 1-3 are three time points and let (i, j) be
the edge from node i to node j, where (i, j) ∈{before, af-
ter, equal, vague}. Assume the current annotation is (1, 2) =
before and (2, 3) = vague and (1, 3) is missing. However,
(1, 3) cannot be after because it leads to (2, 3) = after, con-
flicting with their current annotation; similarly, (1, 3) cannot
be equal, either.

A standard way to perform global inference is
to formulate it as an Integer Linear Programming

(ILP) problem(Roth and Yih, 2004) and enforce
transitivity rules as constraints. Let R be the
TempRel label set2, Ir(ij) ∈ {0, 1} be the indi-
cator function of (i, j) = r, and fr(ij) ∈ [0, 1]
be the corresponding soft-max score obtained via
SF+P . Then the ILP objective is formulated as

Î = argmax
I

∑
i<j

∑
r∈R fr(ij)Ir(ij) (1)

s.t. ΣrIr(ij) = 1
(uniqueness)

,

Ir1(ij) + Ir2(jk)− ΣN
m=1Irm3 (ik) ≤ 1,

(transitivity)

where {rm3 } is selected based on the general tran-
sitivity proposed in (Ning et al., 2017). With
Eq. (1), different implementations of Line 6 in Al-
gorithm 1 can be described concisely as follows:
(i) Local inference is performed by ignoring “tran-
sitivity constraints”. (ii) Global inference can be
performed by adding annotated edges in P as ad-
ditional constraints. Note that Algorithm 1 is only
for the learning step of TempRel extraction; as
for the inference step of this task, we consistently
adopt the standard method by solving Eq. (1), as
was done by (Bramsen et al., 2006; Chambers and
Jurafsky, 2008; Denis and Muller, 2011; Do et al.,
2012; Ning et al., 2017).

4 Experiments

In this work, we consistently used TB-Dense as
the fully annotated dataset (F) and TBAQ as the
partially annotated dataset (P). The corpus statis-
tics of these two datasets are provided in Table 1.
Note that TBAQ is the union of TimeBank and
AQUAINT and it originally contained 256 docu-
ments, but 36 out of them completely overlapped
with TB-Dense, so we have excluded these when
constructing P . In addition, the number of edges
shown in Table 1 only counts the event-event rela-
tions (i.e., do not consider the event-time relations
therein), which is the focus of this work.

Data #Doc #Edges Ratio Type
TB-Dense 36 6.5K 100% F

TBAQ 220 2.7K 12% P
Table 1: Corpus statistics of the fully and partially anno-
tated dataset used in this work. TBAQ: The union of Time-
Bank and AQUAINT, which is the training set provided by
the TempEval3 workshop. #Edges: The number of annotated
edges. Ratio: The proportion of annotated edges.

We also adopted the original split of TB-Dense
(22 documents for training, 5 documents for de-
velopment, and 9 documents for test). Learning

2In this work, we adopt before, after, includes,
be included, simultaneously, and vague.



parameters were tuned to maximize their corre-
sponding F-metric on the development set. Using
the selected parameters, systems were retrained
with development set incorporated and evaluated
against the test split of TB-Dense (about 1.4K re-
lations: 0.6K vague, 0.4K before, 0.3K after, and
0.1K for the rest). Results are shown in Table 2,
where all systems were compared in terms of their
performances on “same sentence” edges (both
nodes are from the same sentence), “nearby sen-
tence” edges, all edges, and the temporal aware-
ness metric used by the TempEval3 workshop.

The first part of Table 2 (Systems 1-5) refers to
the baseline method proposed at the beginning of
Sec. 3, i.e., simply treating P as F and training on
their union. PFull is a variant of P by filling its
missing edges by vague. Since it labels too many
vague TempRels, System 2 suffered from a low
recall. In contrast, P does not contain any vague
training examples, so System 3 would only pre-
dict specific TempRels, leading to a low precision.
Given the obvious difference in F and PFull, Sys-
tem 4 expectedly performed worse than System 1.
However, when we see that System 5 was still
worse than System 1, it is surprising because the
annotated edges in P are correct and should have
helped. This unexpected observation suggests that
simply adding the annotated edges from P into F
is not a proper approach to learn from both.

The second part (Systems 6-7) serves as an ab-
lation study showing the effect of bootstrapping
only. PEmpty is another variant of P we get by re-
moving all the annotated edges (that is, only nodes
are kept). Thus, they did not get any information
from the annotated edges in P and any improve-
ment came from bootstrapping alone. Specifically,
System 6 is the standard bootstrapping and Sys-
tem 7 is the constrained bootstrapping.

Built on top of Systems 6-7, Systems 8-9 fur-
ther took advantage of the annotations of P , which
resulted in additional improvements. Compared
to System 1 (trained on F only) and System 5
(simply adding P into F), the proposed System 9
achieved much better performance, which is also
statistically significant with p<0.005 (McNemar’s
test). While System 7 can be regarded as a repro-
duction of Ning et al. (2017), the original paper
of Ning et al. (2017) achieved an overall score of
P=43.0, R=46.4, F=44.7 and an awareness score
of P=42.6, R=44.0, and F=43.3, and the proposed
System 9 is also better than Ning et al. (2017) on

all metrics.3

5 Discussion

While incorporating transitivity constraints in in-
ference is widely used, Ning et al. (2017) pro-
posed to incorporate these constraints in the learn-
ing phase as well. One of the algorithms pro-
posed in Ning et al. (2017) is based on Chang
et al. (2012)’s constraint-driven learning (CoDL),
which is the same as our intermediate System 7 in
Table 2; the fact that System 7 is better than Sys-
tem 1 can thus be considered as a reproduction of
Ning et al. (2017). Despite the technical similar-
ity, this work is motivated differently and is set to
achieve a different goal: Ning et al. (2017) tried to
enforce the transitivity structure, while the current
work attempts to use imperfect signals (e.g., par-
tially annotated) taken from additional data, and
learn in the incidental supervision framework.

The P used in this work is TBAQ, where only
12% of the edges are annotated. In practice, every
annotation comes at a cost, either time or the ex-
penses paid to annotators, and as more edges are
annotated, the marginal “benefit” of one edge is
going down (an extreme case is that an edge is of
no value if it can be inferred from existing edges).
Therefore, a more general question is to find out
the optimal ratio of graph annotations.

Moreover, partial annotation is only one type of
annotation imperfection. If the annotation is noisy,
we can alter the hard constraints derived from P
and use soft regularization terms; if the annotation
is for a different but relevant task, we can formu-
late corresponding constraints to connect that dif-
ferent task to the task at hand. Being able to learn
from these “indirect” signals is appealing because
indirect signals are usually order of magnitudes
larger than datasets dedicated to a single task.

6 Conclusion

Temporal relation (TempRel) extraction is impor-
tant but TempRel annotation is labor intensive.
While fully annotated datasets (F) are relatively
small, there exist more datasets with partial an-
notations (P). This work provides the first inves-
tigation of learning from both types of datasets,
and this preliminary study already shows promise.
Two bootstrapping algorithms (standard and con-
strained) are analyzed and the benefit of P , al-

3We obtained the original event-event TempRel predic-
tions of Ning et al. (2017) from https://cogcomp.
org/page/publication_view/822.
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No. Training Same Sentence Nearby Sentence Overall Awareness
Data Bootstrap P R F P R F P R F P R F

1 F - 47.1 49.7 48.4 40.2 37.9 39.0 42.1 41.0 41.5 40.0 40.7 40.3
2 PFull - 37.0 33.1 35.0 34.4 19.6 24.9 37.7 23.6 29.0 36.9 24.0 29.1
3 P - 34.1 52.5 41.3 26.1 48.1 33.8 30.2 52.1 38.2 28.6 49.9 36.4
4 F+PFull - 38.5 32.2 35.1 40.1 38.1 39.1 40.8 35.3 37.8 37.1 36.2 36.6
5 F+P - 43.7 43.9 43.8 39.1 38.3 38.7 41.8 40.7 41.2 38.6 41.4 40.0
6 F+PEmpty Local 41.7 50.3 45.6 39.5 48.1 43.4 41.8 50.4 45.7 40.9 47.5 43.9
7 F+PEmpty Global 44.7 55.5 49.5 40.1 48.7 44 42.0 51.4 46.2 41.1 48.3 44.4
8 F+P Local 43.6 50 46.6 43 46.9 44.8 43.7 47.8 45.6 42 45.6 43.7
9 F+P Global 44.9 56.1 49.9 43.4 52.3 47.5 44.7 54.1 49.0 44.1 50.8 47.2

Table 2: Performance of various usages of the partially annotated data in training. F : Fully annotated data. P: Partially
annotated data. PFull: P with missing annotations filled by vague. PEmpty: P with all annotations removed. Bootstrap:
referring to specific implementations of Line 6 in Algorithm 1, i.e., local or global. Same/nearby sentence: edges whose
nodes appear in the same/nearby sentences in text. Overall: all edges. Awareness: the temporal awareness metric used in the
TempEval3 workshop, measuring how useful the predicted graphs are (UzZaman et al., 2013). System 7 can also be considered
as a reproduction of Ning et al. (2017) (see the discussion in Sec. 5 for details).

though with missing annotations, is shown on a
benchmark dataset. This work may be a good
starting point for further investigations of inciden-
tal supervision and data collection schemes of the
TempRel extraction task.
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