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ABSTRACT
This paper addresses the long-standing spectral quantitation problem
in magnetic resonance spectroscopic imaging (MRSI). Although a
large body of work has been done to develop robust solutions to the
problem for practical MRSI applications, the problem remains chal-
lenging due to low signal-to-noise ratio (SNR) and model nonlinear-
ity. Building on the existing work on the use of prior knowledge (in
the form of spectral basis) for spectral estimation, this paper refor-
mulates spectral quantitation as a joint estimation problem, and uti-
lizes a regularization framework to enforce spatial constraints (e.g.,
spatial smoothness or transform sparsity) on the spectral parameters.
Simulation and experimental results show that the proposed method,
by exploiting both the spatial and spectral characteristics of the un-
derlying signals, can significantly improve the estimation accuracy
of the spectral parameters over state-of-the-art methods.

Index Terms— MRSI, spectral estimation, spatial regulariza-
tion, sparsity constraint, Cramér-Rao bound

1. INTRODUCTION

MRSI is a unique tool for non-invasive acquisition of biochemi-
cal information (e.g., concentration of metabolites) from biologi-
cal systems, and spectral quantitation is one of the key underly-
ing problems. This problem is challenging due to low SNR and
model nonlinearity. Significant efforts have been made to address
this problem in order to obtain robust estimates of spectral param-
eters, i.e., metabolite concentrations, T2 relaxation time constants,
and resonance frequencies. Earlier linear prediction-based methods
(e.g., HSVD [1], HLSVD [2], LPSVD [3], and HTLS [4]) solve the
underlying nonlinear optimization problem effectively but perform
poorly on MRSI data of low SNRs. State-of-the-art methods (e.g.,
VARPRO [5], LCModel [6], QUEST [7], AQSES [8], Soher et al.
[9], etc.) enforce stronger spectral constraints (in the form of spec-
tral basis) and provide much better estimates of the spectral param-
eters over the linear prediction-based methods. While VARPRO,
LCModel, and QUEST have been successfully used for process-
ing practical MRSI data, they have large estimation variances in the
regime of very low SNRs, significantly limiting their practical utility
in high-resolution MRSI applications.

This paper addresses this problem by reformulating spectral
quantitation as a joint estimation problem (in contrast to the existing
methods that estimate the spectral parameters voxel by voxel inde-
pendently). The new formulation enables the use of known spatial
characteristics of metabolite distributions (e.g., smoothness or trans-
form sparsity) for improved spectral estimations. More specifically,
we use a regularization framework to enforce spatial constraints on
spectral estimation and solve the resulting regularized least-squares
problem efficiently in a two-step procedure. We have carried out

a performance analysis of the proposed method using constrained
Cramér-Rao bound (CRB) [10, 11], which shows the theoretical
benefits of using spatial constraints for improving spectral estima-
tion. The improved performance of the proposed method over one
of the state-of-the-art methods, VARPRO [5], has been validated
using both simulation and experimental data.

The rest of this paper is organized as follows. Section 2 de-
scribes the signal model, problem formulation, and proposed solu-
tion. Section 3 discusses the performance of the proposed method
based on our simulation and experimental studies and theoretical
analysis, which is followed by the conclusion of this paper in sec-
tion 4.

2. PROPOSED METHOD

2.1. Problem Formulation

The measured time-domain MRSI data d(x, t) at spatial location xp

and time instant tq for p = 1, · · · , P , and q = 1, · · · , Q, from a
sample with N metabolites can be expressed as

d(xp, tq) =
NX

n=1

an(xp)e
�tq/T

⇤
2,n(xp)e�i2⇡�f(xp)tq'n(tq) + ⇠pq,

(1)
where ⇠pq represents measurement noise (often assumed to be
Gaussian), an, T

⇤
2,n, and 'n represent the concentration (weighted

by echo-time), T ⇤
2 relaxation time, and basis function for the nth

metabolite, respectively, and �f(xp) is the frequency shift caused
by B0 field inhomogeneity. Here, 'n is assumed to be known
because it can be obtained from either quantum simulation (e.g.,
GAVA [12]) or in vitro experiments. Note that we have intentionally
left out the baseline components in this signal model for simplicity.

For notation convenience, Eq. (1) can be written in a vector-
matrix form as

dp = K(✓p)ap + ⇠p, p = 1, · · · , P, (2)

where dp contains all the measured data at location xp put in a vector
form, and similarly, ap and ⇠p are the concentration vector and noise
vector, respectively. K(✓p) is the model matrix with ✓p containing
all the nonlinear unknown parameters (i.e., T ⇤

2,n) at location xp as
defined in (1).

The goal of spectral quantitation in MRSI is to determine ap

and ✓p from dp. This is done in existing methods by solving the fol-
lowing optimization problems (or maximum likelihood estimation
problems for Gaussian noise):

(

ˆ

ap, ˆ✓p) = arg min

ap,✓p

kdp �K(✓p)apk22, (3)



for p = 1, 2, · · · , P . In the absence of any spatial constraints, the
above estimation problems can be solved independently. Here,
we propose to solve these estimation problems jointly so that
we can impose spatial constraints on both ap and ✓p. Let d =⇥
d

T
1 , d

T
2 , · · · , dT

P

⇤T , a =

⇥
a

T
1 , a

T
2 , · · · , aT

P

⇤T , and K(✓) =

[K(✓1) | K(✓2) | · · · | K(✓P )], we reformulate the spectral quan-
tification problem as

(

ˆ

a, ˆ✓) = argmin

a,✓
kd�K(✓)ak22 + R(a,✓), (4)

where R(a,✓) is a regularization functional to absorb spatial con-
straints on a and ✓. In the present study, we focus on imposing
smoothness constraints. This is motivated by the fact that in most
MRSI data obtained from biological samples, spatial distributions of
T ⇤
2 relaxation time and of metabolite concentration within a tissue

are rather smooth. More specifically, we propose to impose spatial
constraints on ✓ and a by sequentially solving the following two
regularized least-squares problems:

ˆ

✓ = argmin

✓

1

2

kd�K(✓)K(✓)

†
dk22 + �kW

✓

✓k22, (5)

ˆ

a = argmin

a

1

2

kd�K(✓̂)ak22 + ⌘kW
a

{a}k1, (6)

where “†” represents the Moore-Penrose pseudo inverse, � and ⌘ are
regularization parameters, the weighting matrix W

✓

(derived from
one or multiple reference images) is used to preserve edges (see [13]
for details), and W

a

is a sparsifying operator, e.g., the wavelet trans-
form, total variation (TV) transform, or total generalized variation
(TGV) transform [14]. The formulation in (5) and (6) decouples the
estimation of the nonlinear parameter (✓) from that of the linear pa-
rameter (a) using the variable projection strategy, significantly im-
proving the computational efficiency.

2.2. Solution Algorithm

The joint quantitation problem in (5) and (6) is much larger than the
individual quantitation problems in (3), so it is desirable to solve
them efficiently. The problem in (5) is a weighted `2-norm reg-
ularized nonlinear least squares problem, which can be solved us-
ing a quasi-Newton method where only gradient evaluation is re-
quired. We used the limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm [15] to solve (5) because of its compu-
tational efficiency and relatively low memory usage.

After ✓ is estimated, we then solve the `1-norm regularized
least-squares problem in (6) using an alternating direction method
for multiplier (ADMM) [16]. For simplicity, we present the algo-
rithm for the case that W{a} in (6) is a linear operator of a (e.g., the
wavelet and TV transform) and can thus be represented in a matrix
form, i.e., W

a

{a} = W
a

a. The proposed algorithm can be easily
extended to the case that W{a} represents the TGV transform as in
[14, 16]. As proposed by Guo et al. [16], we introduce an auxiliary
variable u, so that (6) is equivalent to

min

a,u

1

2

kd�K(

ˆ

✓)ak22 + ⌘kuk1, s.t. u = W
a

a. (7)

We then decompose (7) into the following subproblems, whose con-
vergence is guaranteed by the ADMM algorithm [17]:

u

(n+1)
= argmin

u

kuk1 +
µ
2⌘

ku�W
a

a

(n) � ˜

u

(n)k22,(8)

a

(n+1)
= argmin

a

f(a), (9)

˜

u

(n+1)
=

˜

u

(n)
+ �(W

a

a

(n+1) � u

(n+1)
j ), (10)

where

f(a) = kd�K(

ˆ

✓)ak22 + µku(n+1) � (W
a

a+

˜

u

(n)
)k22.

Subproblem (8) can be solved explicitly using shrinkage:

u

(n+1)
= shrink(Wa

(n)
+

˜

u

(n), ⌘/µ),

where shrink(v, ⌘) = v. ⇤ max (1� ⌘./|v|, 0), while subproblem
(9) is quadratic, and can be readily solved by standard convex opti-
mization tools.

4 3 2 4 3 2 4 3 2 
ppm 

a) 

b) 

VARPRO Proposed Ground Truth 

Fig. 1. Simulation results: a) the metabolite concentration maps for
NAA, Creatine, and Glx (Glutamate+Glutamine), respectively; and
b) three spectra at three spatial locations marked by red dots, which
illustrate the SNR level of the original data. Note the improved per-
formance (reduced spatial variation) of the proposed method over
VARPRO.

3. RESULTS AND DISCUSSION

3.1. Validation with Simulated MRSI Data

We have evaluated the performance of the proposed method and
compared it with VARPRO [5], a standard method used in practice.
VARPRO performs spectral quantitation voxel by voxel using a set
of pre-determined spectral basis, as is done in other state-of-the-art
frequency-domain methods (LCModel [6], etc.) and time-domain
(QUEST [7], AQSES [8], etc.) methods.

Figure 1 shows a comparison of the typical quantitation re-
sults for NAA, Creatine, and Glx (Glutamate+Glutamine) maps
using VARPRO and the proposed method, respectively, on a simu-
lation phantom dataset. The phantom was generated using the basis
functions of 6 metabolites (NAA, Creatine, Choline, Glutamine,
Glutamate, and myo-Inositol) obtained by quantum simulations.
From Fig. 1, we can see that the estimated concentration maps by
VARPRO were very noisy (large spatial variations); the proposed



method significantly reduced the estimation variance. To better illus-
trate the estimation results, Fig. 2 shows the synthetic spectra from
the true spectral parameters and the estimated parameters for one
spatial location. As can be seen, the spectrum from VARPRO pa-
rameters showed noticeable errors, which were significantly reduced
by the proposed method (due to the spatial sparsity constraint).
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Fig. 2. Spectra generated using the true spectral parameters from
the simulation phantom in Fig. 1, and the estimated parameters from
VARPRO and the proposed method, respectively. The second row
shows the difference between the estimated spectra and the true one.
Note the reduced errors by the proposed method.
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Fig. 3. Results from in vivo MRSI data. The concentration maps for
two metabolites, NAA (top) and Creatine (bottom), are presented.
Note that the VARPRO results show significant spatial variations (in-
dicating large estimation variance), which are reduced considerably
by the proposed method.

3.2. Validation with Experimental MRSI Data

To further validate the proposed method, an in vivo dataset was ac-
quired from a healthy volunteer on a 3T scanner with a 30ms echo-
time and 48 x 48 spatial encodings using an echo-planar spectro-
scopic imaging (EPSI) sequence. Figure 3 shows the NAA and Cre-
atine maps obtained using VARPRO and the proposed method, re-
spectively. As can be seen, the metabolite concentration maps esti-
mated by VARPRO showed large spatial variations, including noisy
“spikes” at some locations. The proposed method significantly re-
duced the estimation variance of VARPRO, as expected. The perfor-
mance improvement of the proposed method observed from the ex-
perimental data was consistent with the simulation results in Fig. 1.

One simple idea to apply spatial regularization is to denoise
the estimates of a state-of-the-art method by enforcing the spatial

smoothness constraint:

ˆ

a = argmin

a

1

2

ka� ˜

ak22 + ⌘kW
a

{a}k1, (11)

where ˜

a denotes the current estimation of a by a state-of-the-art
method. We have evaluated this method based on VARPRO, as well.
As indicated by Fig. 4, such an approach can help reduce the noise,
but it also introduces some blurring artifacts, and the estimates may
also be biased due to non-Gaussianarity of the noise in the VARPRO
results. The proposed method overcomes these problems, and per-
haps more importantly, the performance of the proposed method can
be much more easily characterized.
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Fig. 4. Estimated concentration maps for metabolite myo-Inositol
using VARPRO, denoising of VARPRO and the proposed method,
respectively, from the in vivo MRSI data in Fig. 3. Note the
improved performance of the proposed method over the denoising
method.

3.3. Performance Analysis

For simplicity, we ignore the estimation error in ✓, and treat ✓⇤ as
the true value. It is well known that if the concentration a satisfies
a certain level of transform sparsity, then a solution to (7) is also a
solution to the following constrained optimization problem:

ˆ

a = argmin

a

1

2

kd�K(✓

⇤
)ak22, s.t. kW

a

ak0 = M. (12)

Therefore, the performance of the proposed method can be charac-
terized by the constrained CRB [10, 11] of (12), which is a lower
bound on the variance of the estimated parameters that reside in a
constrained space. Assume that a is real and W is invertible for
convenience. The total variance for ˆa in (12) is bounded as [11]

Var(ˆa)constrained � Tr(A[ATFcA]

�1AT
), (13)

where Fc is the Fisher information matrix, and A is selected to be
those columns of W�1

a

corresponding to the support of W
a

a. In
practice, the constrained CRB is calculated using ˆ

✓ from (5). This
discrepancy can be modeled as an additive perturbation, which can
be characterized by a linearization of (5) and K(✓).

In comparison with state-of-the-art methods, the estimator in (3)
does not fix the value of nonlinear terms and has no sparsity con-
straint; its performance can be characterized by the unconstrained
CRB:

Var(ˆa)unconstrained � Tr(F�1
u ). (14)

To describe the theoretical improvement when using spatial con-
straints for quantitation, we define the ratio between the constrained
CRB in (13) and the unconstrained CRB in (14):

R =

Tr(F�1
u )

Tr(A[ATFcA]

�1AT
)

. (15)



We also define sparsity level as the proportion of non-zero terms of
W

a

a in (12). Figure 5 compares the improvement in CRB for spa-
tial constraints by showing R’s against different sparsity levels (red
line), and the ratios between the total variance of ˆa from the estima-
tor in (3) and the estimator in (7) obtained by Monte-Carlo simula-
tions (blue line). As expected, the improvement obtained by incor-
porating sparsity constraint increases as the sparsity level decreases.
The result of Fig. 5 is consistent with the conclusion obtained by
Lam et al. [11].
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Fig. 5. Performance analysis of the proposed method imposing
wavelet transform sparsity on the concentration maps. The red line is
the R’s in (15), while the blue line is the result of the corresponding
Monte-Carlo simulations.

4. CONCLUSION

Spectral quantitation is a key problem in MRSI. Existing methods
exploit only spectral prior information, and solve the problem inde-
pendently for each voxel. While these methods have been success-
fully used in practice, their spectral estimates from MRSI data with
low SNRs often have very large variances, limiting their practical
utility in high-resolution MRSI studies. In this paper, we have pre-
sented a new method to address this problem. The proposed method
jointly estimates the metabolite concentrations for all spatial loca-
tions, while enforcing both smoothness of the T ⇤

2 map and trans-
form sparsity of the metabolite concentrations. Simulation and ex-
perimental results show that the proposed method can produce sig-
nificantly better spectral estimates than the state-of-the-art methods,
which is consistent with the predicted performance using constrained
CRB analysis. The proposed method should prove useful for spectral
quantitation in various MRSI studies.
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