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1 Synopsis

A novel nuisance removal method is proposed for 1H-MRSI. The method uses spectral
bases generated for water and subcutaneous lipids using quantum simulation, and can per-
form nuisance signal removal directly from (k,t)-space data. Consequently, the proposed
method is able to handle sparsely sampled MRSI data, which provides a desirable flexibility
for designing accelerated 1H-MRSI data acquisition schemes. Experimental results demon-
strate that the proposed method is capable of removing nuisance signals from 1H-MRSI
data acquired from the brain without water and lipid suppression.

2 Purpose

Effective removal of nuisance signals (3 or 4 orders of magnitude larger than metabolite
signals) is often challenging for practical 1H-MRSI experiments. Conventional methods
resort to water and lipid suppression pulses followed by post processing to remove any
residual nuisance signals [1, 2, 3, 4]. While these methods perform reasonably well for
1H-MRSI data collected with long TE, Nyquist sampling of (k,t)-space, and suppression
pulses, they cannot handle sparsely sampled 1H-MRSI data collected with short TE and
no suppression pulses. This paper presents a new method to address this problem. A
key feature lies in the use of spectral bases generated for water and subcutaneous lipids
using quantum simulation (Fig. 1). With these spectral bases, the proposed method can
effectively remove water and lipid signals from sparsely sampled 1H-MRSI data acquired
without suppression pulses. The method will be particularly useful for accelerated MRSI
applications.
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3 Method

In order to incorporate prior spectral information for water and subcutaneous lipids into
our method, we express the MR signal of water or lipids as

ρ(t) = s(t)e(t) =

N∑
n=1

cne
−t/T2n−j2πfnt

P∑
p=1

gpe
j2πp∆ft,

where s(t) represents the ideal Lorentzian-shaped spectrum, and e(t) is the generalized
series (GS) [5] compensating any line-shape distortions caused by local field inhomogeneity.
It is well-known that under ideal conditions, water protons have one spectral component at
4.7ppm, and triglycerides (the principal MR measurable subcutaneous lipids [6, 7]) possess
protons experiencing different electron shielding effects and generate multiple resonance
components (Fig. 1a). The ideal spectral structures for both water and lipids can be
generated through quantum simulation [8]. An example of triglyceride spectrum is shown in
Fig. 1b. Note that: 1) the concentration ratios between the different spectral components
are not spatially uniform since the saturation of triglycerides varies; 2) different spectral
components have different T2 relaxation constants [7].

Given the spectral bases, the proposed method uses a small set of model parameters
denoted as θ = {{cn}, {T2n, {gp}}} to ensure that the model matches with a given exper-
imental data. We propose to estimate θ by solving the optimization problem below and
then subtract the estimated nuisance signals from the original signal:

θ̂ = arg min
θ
‖d−ΩktF

∑
m

Ω
(m)
x ρ(m)(θ)‖22 +R(θ),

where d, ρ, and n are each discretized and vectorized, Ωkt is the (k,t)-space sampling

operator, F represents the transform from x-space to k-space, Ω
(m)
x is the spatial support

for the m-th type of tissue (e.g., fat layer, white matter, gray matter, and CSF, as in the
brain), and R(θ) is a regularization term imposing both spatial and spectral constraints
on θ.

In practice, the spatial constraints can be obtained from auxiliary anatomical scans.
The optimization problem can be efficiently solved by alternatively determining θ1 =
{{cn}, {T2n}} and θ2 = {gp}. Specifically, when θ1 is fixed, it is a linear least-squares
(LS) problem and can be solved by standard convex optimization tools; when θ2 is fixed,
it is a large-scale nonlinear LS problem, and we can resort to quasi-Newton methods such
as the limited-memory BFGS algorithm [9].

4 Results

We have evaluated the performance of the proposed method using experimental data ac-
quired from the brain of healthy volunteers on a 3T Siemens Trio MRI scanner. The
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acquisition sequence was a 2D bipolar echo-planar spectroscopic imaging (EPSI) sequence,
with echo time TE=20ms, echo-spacing 1.74ms, and in-plane nominal resolution 3.75mm
(64x64 matrix size). A corresponding anatomical image was also acquired and segmented
into different tissue types (Fig. 2). Note lipid signals were assumed to be generated from
the fat layer.

The nuisance removal effect is shown in Fig. 3. As can be seen, the nuisance was
removed to a negligible level, even when no suppression pulses were applied in the data ac-
quisition. In nuisance signal removal, it is important that metabolite signals are protected.
To demonstrate the ability of the proposed method to preserve metabolite signals during
nuisance removal, two sets of MRSI reconstruction results are shown in Fig. 4, 5. The
reconstructions were obtained using: 1) the conventional Fourier method, with a hamming
window; and 2) the SPICE reconstruction method [10]. As can be seen, the metabolite
signals are well-preserved in the reconstruction by the proposed nuisance removal method.

5 Conclusion

A novel method is presented for removing nuisance signals from 1H-MRSI data. The pro-
posed method uses spectral bases for water and lipids generated using quantum simulation.
To our knowledge, this is the first time that prior spectral information for water and lipids
are used for nuisance signals removal for 1H-MRSI. Experimental results demonstrate that
the method can handle sparsely sampled 1H-MRSI data acquired without nuisance sup-
pression pulses. The proposed method will enhance the flexibility and practical usefulness
of accelerated 1H-MRSI.
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Figure 1: Fig. 1. (a) The multiple spectral components (different microenvironments and
corresponding chemical shifts) generated in MR experiments by triglycerides, which is the
principal category of MR measurable subcutaneous lipids. (b) A typical spectrum example
of lipids.

Figure 2: Fig. 2. Segmentation was performed against corresponding anatomical images.
The four spatial masks shown below are fat layer, cerebrospinal fluid, white matter, and
gray matter, respectively. Note the slight overlap between masks is designed to alleviate
the partial volume effect.
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Figure 3: Fig. 3. Whole spectral integral of (a) original signal, (b) estimated nuisance
signal, and (c) residual. Note the gray scale difference in (c). The bright area in the outer
brain region is a common artifact of EPSI, which can be readily removed in subsequent
analysis.

Figure 4: Fig. 4. (a) Whole spectral integral and (b) a typical spectrum after nuisance
removal. Outer brain artifacts were masked, and a k-space truncation with a hamming
window is applied. A major peak at circa 2ppm can be observed.

Figure 5: Fig. 5. The SPICE denoising results: (a) spectral integral for NAA ( 2ppm),
and (b) a typical spectrum. Peaks from NAA, Cr, and Cho can be clearly observed, while
water/lipid signals are removed to a negligible level.
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