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■ We pose the challenge to define a principled way to measure the 
benefits of these signals to a given downstream task, and the 
challenge to further understand why and how these signals can help 
reduce the complexity of the learning problem in theory. 

■ Main papers
[EMNLP’21] Foreseeing the Benefits of Incidental Supervision
[NeurIPS’20] Learnability with Indirect Supervision Signals

What to expect



Let’s Walk Through A Toy Example



Task: Pair-wise Relationship Between Entities

Thanks to Freepik and Flaticon for creating and sharing the icons freely.



Six Pairs of Relationships

If each relation can choose from a label set of 2 labels, then there are 26 possibilities.

2 possibilities 2 possibilities 2 possibilities

2 possibilities 2 possibilities 2 possibilities



Six Pairs of Relationships

Suppose that we already know the label for 3 pairs of them. The total number of possibilities is reduced 
from 26=64 to 23=8. In other words, we still know nothing about the remaining 3 pairs of relationships.

Known Known 2 possibilities

2 possibilities 2 possibilities Known



Introducing A Structure Among the Entities

Known Known 2 possibilities

2 possibilities 2 possibilities Known

Now, assume that we learn more information about the problem!
(1) the pair-wise relation between entities is an “order relation” 
(2) all of the entities create a Directed Acyclic Graph (DAG)



Introducing A Structure Among the Entities

Now with 3 known edges, we have a “partial order.” 



Introducing A Structure Among the Entities

Now with 3 known edges, we have a “partial order.” 

There are only 3 possibilities to describe the 
entities now (also known as the linear 
extensions of the partial order).

Remember the number of possibilities 
would have been 23=8 if we hadn’t known 
this structure.



A Relevant Example in NLP is Temporal Relationship Classification
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We “indirectly” learn something about the red edge from other edges.
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Temporal relation graph: Nodes are events and 
edges are temporal relationships. It is more complex 
than a DAG because the edges can choose from 
more than two directions (depending on the setup, 
there can be as many as 13[1] labels representing the 
temporal relationship between two events). 

But the concept remains the same – the uncertainty 
is reduced because of the structure of the problem.

[1] Joint Reasoning for Temporal and Causal Relations. Ning et al., ACL’18.



Partial or complete, that’s the question [NAACL’19]

(a) Complete
same budget

(b) Partial
same budget

Training Phase

𝒯!"#!

Testing Phase



q Even if some annotations are partial, we “indirectly” learn 
information about the unannotated edges, so when we have 
a fixed budget, we can gain more “information” and achieve 
higher performance.

q How do we quantify the information brought by the structure?

complete

partial

++ ++ ++ ++ ++ ++ ++ ++ +
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Partial or complete, that’s the question [NAACL’19]



𝒇𝒌 be the size of the feasible subset
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Quantifying Information: Problem Setup

Structure: a vector of random variables: 𝑌 = 𝑌%, 𝑌&, … , 𝑌'
Let ℒ be the label set

𝑌 ∈ 𝐶 ℒ' ⊆ ℒ'

Annotation:  
𝑘 out of 𝑑 variables are labeled à 𝑌	is further limited to a subset of 𝐶 ℒ'

Let 𝒇𝒌 be the size of the feasible subset
𝑓! = 𝐶 ℒ" ≥ 𝑓# ≥ 𝑓$ ≥ ⋯ ≥ 𝑓" = 1

Not all assignments are valid 
(aka “constraints”)

Complete annotationNo annotation
k=3 out of d=6 variables are labeled

d=6 variables to be labeled

𝒇𝒌 = 𝟑

The relation network should be a DAG



𝒇𝒌 be the size of the feasible subset
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Quantifying Information: Problem Setup

Structure: a vector of random variables: 𝑌 = 𝑌%, 𝑌&, … , 𝑌'
Let ℒ be the label set

𝑌 ∈ 𝐶 ℒ' ⊆ ℒ'

Annotation:  
𝑘 out of 𝑑 variables are labeled à a subset of 𝐶 ℒ'

Let 𝒇𝒌 be the size of the feasible subset
𝑓! = 𝐶 ℒ" ≥ 𝑓# ≥ 𝑓$ ≥ ⋯ ≥ 𝑓" = 1

Define the benefit of k labels: 𝑰𝒌 ≜ 𝐥𝐨𝐠 |𝑪(𝓛𝒅)| − 𝑬[𝐥𝐨𝐠 𝒇𝒌] 

how much of the solution space 𝐶 ℒ!  has been 
disqualified by 𝑘 labels

Not all assignments are valid 
(aka “constraints”)

Complete annotationNo annotation



Quantifying Information: Ik for DAG

𝑰𝒌: The benefit of k labels is concave

𝜟𝒌 = 𝑰𝒌 − 𝑰𝒌#𝟏: The benefit of a new label is diminishing
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Quantifying Information: Other Types of Structures
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complete
partial

complete

partial

Chain
(temporal relation extraction)

complete

partial

Bipartite Graph
(semantic role classification)

complete

partial

complete

partial

Seq Tagging
(chunking)

complete
partial

𝜟𝒌 = 𝑰𝒌 − 𝑰𝒌"𝟏: The benefit of a new label

Seq Tagging

more concave



What is 𝐼! actually?

Definition: A 𝒌-partial annotation 𝐴/ is a vector of random variables 𝐴/ =
𝐴/,0, 𝐴/,1, … , 𝐴/,2 ∈ ℒ ∪⊓ 2, where ⊓ is a special character for no label yet, 

such that 
∑'(#" 𝕀(𝐴),' ≠⊓) = 𝑘
𝑃 𝑌|𝐴) = 𝑎) = 𝑃(𝑌|𝑌+ = 𝑎),+, 𝑗 ∈ 𝒥), where 𝒥 = 𝑗: 𝑎),+ ≠⊓
𝐴) means k variables in Y are labeled, and those k labels are correct

Theorem: 𝐼/ is the mutual information between 𝑌 and 𝐴/ when both 𝑌 and 
the 𝑘 variables labeled in 𝐴/ follow uniform distributions.
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What’s annotation?

It is the reduction in the uncertainty of a target 𝑌, by a random process 𝐴 
representing the annotation process

More generally, we argue: any signal that has non-zero mutual information 
with Y can be viewed as “annotation”

It points out a way to understand and quantify the value of indirect signals.



Measuring the Benefits of Indirect Signals

Foreseeing the Benefits of Incidental Supervision. He et al., EMNLP21.



Indirect Supervision Signals

■ Given the task of NER, what types of signals can we use?
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Gold Annotations Unlabeled texts

Partial Annotations Noisy Annotations

ORG

Auxiliary Annotations

Cross-lingual Annotations

Constraints

I-ORGO

Knowledge

Same labels in NER

Can we provide a unified framework for indirect signals, and quantify the 
extent to which various indirect signals can help the target task?



PABI: Impact of Indirect Signals

■
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Indirect Signals

Original Concept Class Reduced Concept Class

Recall: 𝑰𝒌 ≜ 𝐥𝐨𝐠 |𝑪(𝓛𝒅)| − 𝑬[𝐥𝐨𝐠 𝒇𝒌] 



PABI: A Unified PAC-Bayesian Informativeness Measure
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Indirect Signals

Original Concept Class

Concept Class with Probability Measure

PAC Setting

PAC-Bayesian Setting [1]

Can handle the infinite concept class case [1] PAC-Bayesian supervised classification: the thermodynamics of 
statistical learning. Catoni, 2007.



Results on NER (Ontonotes 5.0)
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Partial supervision: relative improvement vs. 
the PABI score for partial signals with different 
partial rates

Noisy supervision: relative improvement vs. 
the PABI score for noisy signals with different 
noise rates

Before PABI, one might use partial annotation rate / noise rate as a proxy for the 
usefulness of an incidental dataset; it’s indeed a good proxy.



Results on NER (Ontonotes 5.0)
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Partial + noisy supervision: relative 
improvement vs. the PABI score for data with 
both partial and noisy annotations

Partial + constraints supervision: relative 
improvement vs the PABI score for data with both 
partial labels and constraints

However, the (relative) benefits from the mixed signals (e.g.,  a dataset is both partial and noisy)  
cannot be determined in existing frameworks, this is where our PABI framework helps.



Results on NER (Ontonotes 5.0): Overlay
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Key Insight:
PABI is useful in comparison between the 
contribution of different types of indirect 
supervision signals.The relation between the relative improvement and 

PABI for various indirect signals: partial labels, noisy 
labels, auxiliary labels, partial + noisy, and partial + 
constraints.
The Pearson’s correlation coefficient is: 0.92
The Spearman's rank correlation coefficient is: 0.93

Take away:
The informativeness of a signal predicts 
the improvement provided by the signal.



Study of Learnability

Learnability with Indirect Supervision Signals. Wang et al., NeurIPS20.



Recap
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■ To move one-step further in theoretical analysis, we consider a 
classification task where we predict the target label 𝑌 of an instance 
variable 𝑋.

■ An indirect supervision signal is any random variable (denoted by 𝑂) 
that is correlated to the target label	𝑌.

■ We assume the learner only receives samples of (𝑋, 𝑂)	but does not 
observe 𝑌 directly.

Taking the named entity recognition (NER) tagging as an example:

Instance X

Gold label Y

Indirect 
signals

O1

O2

O3



Intuition

The learnability problem concerns whether we can learn the optimal 
classifier in our model given sufficient indirect supervision samples.
■ Intuitively, some indirect signals cannot guarantee learnability since 

they are weak. 
For example, 𝑂, only tells a statistics of the label but there can be a lot of wrong 
predictions that satisfy this constraint.
In contrast, 𝑂# seems to be a promising choice if the missing rate is low. 

■ How do we formalize our intuition here? 
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Instance X

Gold label Y

Indirect 
signals

O1

O2

O3



Problem Setup

The learner uses the prediction of 𝑌 to induce predictions about 𝑂.	This 
prediction is then evaluated by the observed dataset. The annotation loss 
is used to update the classifier and the transition hypothesis.
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𝑋: input instance

G𝑌: predicted label
(the gold label 𝑌	is not observed)

𝑃( G𝑂)	: induced prediction of the 
supervision signal

ℓ𝒪: annotation 
loss

𝑂: indirect supervision signal

Classification Hypothesis ℋ

Dataset

Transition Hypothesis 𝒯

Update

Update



Learnability Condition: Illustration

To illustrate the learnability condition, we plot the the relationship 
between the classification error of a hypothesis ℎ and the minimum 
annotation loss (risk) it can have over choices of transition hypotheses.
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Learnability Condition 1: Consistency

The optimal classifier should be able to 
induce an optimal prediction of the 
indirect signal. Formally, we require:
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Learnability Condition 2: Identifiability

A suboptimal classifier should induce a 
strictly higher annotation loss than the 
lowest annotation loss on average. 
Formally, we require
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Learnability Condition 3: Complexity

The model should be “simple.” Complexity of a model can be described 
by (a generalized) VC-dimension. Formally, we require:
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Learning Bound
Now we are able to state the main result:

41In other words, we can find the optimal classifier as we have a large training set.



Label 𝑦( 	will induce a distribution family on 
the annotation space	𝒪, denoted as 𝒟((𝑥). 

Separation

To check the first two conditions more conveniently, we further propose 
the separation condition. We illustrate the definition using the example of 
partial label 𝑂 for a 3-class classification problem where 𝑂	is annotated 
as a subset of the label space {1,2,3}.
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Separation condition requires that different families be separated by a 
minimal distance 𝛾 > 0.



Separation: Formal Definition
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* Moreover, if Eq. (1) is not satisfied, then it can be shown that the learning problem can 
be arbitrarily difficult since different labels can induce arbitrarily similar distributions over 
annotation space	𝒪.	In other words, the observation of 𝑂 cannot help us to distinguish 
different labels.



Application of Separation: Joint Supervision
If a single source of supervision signal cannot ensure learnability, it should be 
used jointly with other signals. We show that a joint supervision can:
■ Possibly preserve the pairwise separation if modeled properly. This effect 

is visualized in the following figure, where each signal cannot separate 
one pair of labels, but can be combined to ensure global separation.
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Summary



■ We started with a toy example of DAG
Knowing part of a graph gives us information about the remaining of the graph
We used mutual information as a measure and demonstrated that partially 
annotating structured prediction problems led to better learning performance, 
because the uncertainty reduction was higher.

■ We continued to argue that indirect signals are those that have non-
zero mutual information with the label of the target task.

This is supported in PAC and PAC-Bayesian theory because the reduction of 
uncertainty is actually a term in generalization bounds.
We defined PABI as a measure of usefulness of an indirect supervision dataset, 
and demonstrated its prediction power for actual performance gain on various 
NLP tasks.

■ We formally introduced the learnability conditions from indirect 
signals, and described a more convenient notion called “separation.”

Summary



Thank You


