
1

The Cramér-Rao Bound and Its Application to

Quantification in MRS

Qiang Ning

Department of Electrical and Computer Engineering

Beckman Institute for Advanced Science and Techonology

University of Illinois at Urbana-Champaign

Abstract

Cramer-Rao Bound (CRB) is an important inequality on the error correlation matrix of an estimator.

It describes the theoretical lower bound for an estimator (usually unbiased). Therefore, it is a useful

index of how efficiently an estimator is. Here we will summarize the derivation of CRB, list some

examples and apply this analysis to the quantification (parameters estimation) of spin-echo signals in

MRI.

I. CRAMER-RAO BOUND

This section and the following examples section are essentially based on Levy’s book Prin-

ciples of signal detection and parameter estimation [1].

A. Definition

Let the parameters of an estimator be an m dimensional vector x, and the measurement data

be an n dimensional vector Y . The estimator here is denoted by X̂(Y ). The Cramer-Rao Bound

that we usually used for unbiased estimators is

CE(x) ≥ J−1(x), (1)

where

CE(x) = E[(x− X̂(Y ))(x− X̂(Y ))T ] (2)

is the error correlation matrix of X , and

J(x) = EY [5xlnfY (Y |x)(5xlnfY (Y |x))T ], (3)



2

or equivalently (which is proved in [1]),

J(x) = −EY [5x5T
x lnfY (Y |x)], (4)

is the so-called Fisher Information in Y about the parameters in X . Note in (3) and (4), fY (Y |X)

is the conditional probability distribution function of measurement Y on parameters X , and the

gradient operator is defined as

5x =
[

∂
∂x1

∂
∂x2

· · · ∂
∂xm

]T
. (5)

In practice, the Fisher Information can be calculated entry-wisely in the following two ways.

Ji,j(x) = EY [
∂

∂xi
lnfY (Y |x)

∂

∂xj
lnfY (Y |x)]

= −EY [
∂2

∂xi∂xj
lnfY (Y |x)]. (6)

Given this bound, we have the estimator variance of each parameter,

E[(xi − x̂i(Y ))2] ≥ [J−1]ii(x), (7)

which is useful in the analysis of the efficiency of an estimator.

B. Proof

We prove a more generalized form:

CE(x) ≥ b(x)bT (x) + (Im −5T
Xb(x))J−1(x)(Im −5T

Xb(x))T , (8)

where b(x) is the bias of this estimator,

b(x) = x− E(X̂(Y )). (9)

It is obvious that when the estimator is unbiased, that is, b(x) = 0, (8) degenerates to (1).

Form a 2m dimensional vector

Z =

 x− X̂(Y )− b(x)

5xln(fY (Y |x))

 . (10)

Then let

CZ = E[ZZT ] =

 C11 C12

C21 C22

 (11)
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be its correlation matrix. From (2) and (3), we can immediately have

C11 = CE(x)− b(x)bT (x), (12)

C22 = J(x). (13)

It remains to evaluate

CT
21 = C12 = E[(x− X̂(Y )− b(x))5T

X ln(fY (Y |x))]

=

∫
(x− X̂(y)− b(x))5T

x (fY (y|x))dy. (14)

Note

0 = 5T
x {[x− X̂(y)− b(x)]fY (y|x)}

= fY (y|x)5T
x [x− X̂(y)− b(x)] + [x− X̂(y)− b(x)]5T

x fY (y|x)

= fY (y|x)[Im −5T
x b(x)] + [x− X̂(y)− b(x)]5T

x fY (y|x). (15)

Integrating this identity with respect to y gives

C12 = −Im +5T
x b(x). (16)

Assuming the information matrix C22 = J(x) is positive definite (i.e., invertible, which is usually

true) at point X , we can perform Schur decomposition to CZ(x): C11 C12

C21 C22

 =

 Im C12C
−1
22

0 Im

 C11 − C12C
−1
22 C21 0

0 C22

 Im 0

C−1
22 C21 Im

 .

Because the correlation matrix CZ(x) ≥ 0, C11 − C12C
−1
22 C21 is also non-negative definite, i.e.,

CE(x)− b(x)bT (x)− (Im −5T
x b(x))J−1(x)(Im −5T

x b(x))T ≥ 0, (17)

which is exactly (8).

�
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C. Example

1) CRB Calculation: Consider the estimation of the mean and variance of a sequence {Yk, 1 ≤

k ≤ N} of i.i.d. N(m, v) gaussian random variables.

fY (yk|m, v) =
1√
2πv

e−
(yk−m)2

2v , k = 1, 2, . . . , N,

fY (y|m, v) =
1

(
√

2πv)N
e−

∑N
k=1(yk−m)2

2v ,

L(y|m, v) = ln(fY (y|m, v)) = −N
2

ln(2πv)− 1

2v

N∑
k=1

(yk −m)2.

First order derivatives are
∂L

∂m
=

1

v

N∑
k=1

(yk −m), (18)

and
∂L

∂v
= −N

2v
+

1

2v2

N∑
k=1

(yk −m)2. (19)

Then second derivatives are
∂2L

∂m2
= −N

v
,

∂2L

∂v2
=

N

2v2
− 1

v3

N∑
k=1

(yk −m)2,

and
∂2L

∂m∂v
= − 1

v2

N∑
k=1

(yk −m).

Therefore the Fisher Information matrix is

J(m, v) = N

 v−1 0

0 (2v2)−1

 , (20)

J−1(m, v) = N−1

 v 0

0 2v2

 . (21)

Then the error variances of the entries of any unbiased estimator must satisfy

E[(m− m̂(Y ))2] ≥ v

N
, (22)

E[(v − v̂(Y ))2] ≥ 2v2

N
. (23)
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2) Efficiency: An unbiased estimator is efficient if it reaches its CRB, which means CE(X)−

J−1(X) = 0. Further if only a partial of the eigenvalues of CE(X)−J−1(X) is zero, it is called

partially efficient.

By setting (18) and (19) to be zero, we have

m̂ML(Y ) =
1

N

N∑
k=1

yk, (24)

and

v̂ML(Y ) =
1

N

N∑
k=1

(yk − m̂)2. (25)

It is proved in [1] that

E[m̂ML(Y )] = m, (26)

E[v̂ML(Y )] =
N − 1

N
v, (27)

E[(m− m̂ML(Y ))2] =
v

N
, (28)

E[(v − v̂ML(Y ))2] =
2N − 1

N2
v2. (29)

From the results we see that the unbiased estimator m̂ML(Y ) is efficient because it reaches its

CRB as defined in (21). Even though the estimator v̂ML(Y ) is biased, its error variance, however,

is smaller than the CRB for unbiased estimators. This implies that it is not necessary that biased

estimators have poor error variance performances, instead allowing a small bias can sometimes

be benificial.

Another fact mentioned in [1] on pp. 145 is that all ML estimators have these two properties:

1) Asymptotically unbiased, i.e., limN→∞ b(X) = 0;

2) Asymptotically efficient, i.e., limN→∞E[(xi − x̂i(Y ))2] = [J−1]ii(X);

which can be seen from the example above.

II. QUANTIFICATION OF SINGLE SPIN-ECHO SIGNALS

A. Formulation

We use the model that introduced in Chap. 5.2 Proposed formulation [2], ignoring baseline

signals.

s[m] = smetab[m] + ξ[m], (30)



6

smetab[m] = eiφ0
N∑
n=1

an(TE)ϕn,TE[m]ψn,dn [m], (31)

m = 0, 1, . . . ,M − 1,

where ξ[m] ∼ N(0, σ2) is a complex gaussian noise, φ0 is a zero-order term phase, an(TE) is

a real positive amplitude assumed to exponentially decay with respect to TE

an(TE) = cne
−TE/T2,n , (32)

and ϕn,TE[m] and ψn,dn [m] are metabolite basis function and signal decay, respectively, defined

as

ϕn,TE[m] =
Ln∑
l=1

αl,n(TE)e−iβl,n(TE)e−i2πfl,n(TE)m∆t, (33)

ψn,dn [m] = e−m∆t/dn . (34)

In the above formulations, T2,n is a metabolite-dependent relaxation constant, dn is a real

lineshape parameter and ∆t is the sampling time. αl,n(TE), βl,n(TE) and fl,n(TE) are relative

amplitude, phase and frequency of the l-th resonance of the n-th metabolite which can all be

determined from quantum mechanical simulations.

The parameter vector that we are going to estimate is

θ = [a1, . . . , aN , d1, . . . , dN , φ0]T . (35)

B. Entrywise Derivation of CRB

The probability distribution function of an n-channel i.i.d. real gaussian variable X ∼ N(0, σ2In),

X ∈ Cn is

fX(x) =
1

(2πσ2)n/2
e−
‖x‖2

2σ2 . (36)

The likelihood function of s[m],m = 0, . . . ,M − 1 is therefore

L(s[m]) =
1

(πσ2)M
e−
|ξ[m]|2

σ2 ,

lnL(s[m]) = const− 1

σ2

M−1∑
m=0

|ξ[m]|2, (37)

where ξ[m] ∼ N(0, σ2). Using the result that ∂‖z‖2
∂α

= z(∂z
∗

∂α
) + z∗( ∂z

∂α
) = 2Re{z(∂z

∗

∂α
)} where

z ∈ C, α ∈ R, we have

∂lnL
∂θk

= − 1

σ2

M−1∑
m=0

{
ξ[m]

∂ξ∗[m]

∂θk
+ ξ∗[m]

∂ξ[m]

∂θk

}
, (38)
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where

ξ∗[m] = s∗[m]− e−iφ0
N∑
n=1

an(TE)ϕ∗n,TE[m]ψ∗n,dn [m],

(
∂ξ[m]

∂ak
)∗ =

∂ξ∗[m]

∂ak
= −e−iφ0ϕ∗k,TE[m]ψ∗k,dk [m], (39)

(
∂ξ[m]

∂dk
)∗ =

∂ξ∗[m]

∂dk
= −e−iφ0ak(TE)ϕ∗k,TE[m]

∂ψ∗k,dk [m]

∂dk
, (40)

(
∂ξ[m]

∂φ0

)∗ =
∂ξ∗[m]

∂φ0

= ie−iφ0
N∑
n=1

an(TE)ϕ∗n,TE[m]ψ∗n,dn [m], (41)

k = 1, 2, . . . , N.

By (6), we have

Fp,q(θ) = Eξ

[(
∂lnL
∂θp

)(
∂lnL
∂θq

)]
(42)

In calculating that, we will need the expectation of ξ∗[m1]ξ[m2] and ξ[m1]ξ[m2], ∀m1,m2 =

1, . . . ,M . Because the gaussian noise channels are i.i.d., it is easy to get

Eξ{ξ∗[m1]ξ[m2]} =

{
σ2, for m1 = m2

0, for m1 6= m2

(43)

Eξ{ξ[m1]ξ[m2]} = 0, for m1 6= m2.

To handle ξ[m]ξ[m], we firstly decompose it into real variables:

ξ[m] = ξr[m] + iξi[m], (44)

where ξr[m], ξi[m] ∼ N(0, σ
2

2
) and are independent with each other. And then

Eξ{ξ[m]ξ[m]} = Eξ{ξ2
r + 2iξrξi − ξ2

i } = Eξ{ξ2
r − ξ2

i } = 0. (45)

Therefore

Eξ{ξ[m1]ξ[m2]} = 0,∀m1,m2 = 1, . . . ,M. (46)
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Taking (43) and (46) into consideration, the entries of the Fisher Information matrix is

Fp,q(θ) =
1

σ4
Eξ

{
M−1∑
m1=0

[
ξ[m1]

∂ξ∗[m1]

∂θp
+ ξ∗[m1]

∂ξ[m1]

∂θp

]
M−1∑
m2=0

[
ξ[m2]

∂ξ∗[m2]

∂θq
+ ξ∗[m2]

∂ξ[m2]

∂θq

]}

=
1

σ4
Eξ

{
M−1∑
m=0

[
ξ[m]ξ∗[m]

∂ξ∗[m]

∂θp

∂ξ[m]

∂θq
+ ξ∗[m]ξ[m]

∂ξ[m]

∂θp

∂ξ∗[m]

∂θq

]}

=
1

σ2

M−1∑
m=0

[
∂ξ∗[m]

∂θp

∂ξ[m]

∂θq
+
∂ξ[m]

∂θp

∂ξ∗[m]

∂θq

]

=
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂θp

∂ξ[m]

∂θq

}
. (47)

(48)

Substituting (39)(40)(41) into (47), we get for ∀p, q = 1, . . . , N

Fap,aq(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂ap

∂ξ[m]

∂aq

}

=
2

σ2

M−1∑
m=0

Re
{
−e−iφ0ϕ∗p,TE[m]ψ∗p,dp [m](−eiφ0ϕq,TE[m]ψq,dq [m])

}
=

2

σ2

M−1∑
m=0

Re
{
ϕ∗p,TE[m]ψ∗p,dp [m]ϕq,TE[m]ψq,dq [m]

}
, (49)

Fdp,dq(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂dp

∂ξ[m]

∂dq

}

=
2

σ2

M−1∑
m=0

Re

{
apaqϕ

∗
p,TE[m]

∂ψ∗p,dp [m]

∂dp
ϕq,TE[m]

∂ψq,dq [m]

∂dq

}
, (50)

Fφ0,φ0(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂φ0

∂ξ[m]

∂φ0

}

=
2

σ2

M−1∑
m=0

Re

{
N∑

n1=1

an1ϕ
∗
n1,TE

[m]ψ∗n1,dn1
[m]

N∑
n2=1

an2ϕn2,TE[m]ψn2,dn2
[m]

}
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=
2

σ2

M−1∑
m=0

Re

{
N∑

n1=1

N∑
n2=1

an1an2ϕ
∗
n1,TE

[m]ψ∗n1,dn1
[m]ϕn2,TE[m]ψn2,dn2

[m]

}
, (51)

Fap,dq(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂ap

∂ξ[m]

∂dq

}

=
2

σ2

M−1∑
m=0

Re

{
aqϕ

∗
p,TE[m]ψ∗p,dp [m]ϕq,TE[m]

∂ψq,dq [m]

∂dq

}
, (52)

Fap,φ0(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂ap

∂ξ[m]

∂φ0

}

=
2

σ2

M−1∑
m=0

Re

{
iϕ∗p,TE[m]ψ∗p,dp [m]

N∑
n=1

anϕn,TE[m]ψn,dn [m]

}

= − 2

σ2

M−1∑
m=0

Im

{
ϕ∗p,TE[m]ψ∗p,dp [m]

N∑
n=1

anϕn,TE[m]ψn,dn [m]

}
, (53)

Fdp,φ0(θ) =
2

σ2

M−1∑
m=0

Re

{
∂ξ∗[m]

∂dp

∂ξ[m]

∂φ0

}

=
2

σ2

M−1∑
m=0

Re

{
iapϕ

∗
p,TE[m]

∂ψ∗p,dp [m]

∂dp

N∑
n=1

anϕn,TE[m]ψn,dn [m]

}

= − 2

σ2

M−1∑
m=0

Im

{
apϕ

∗
p,TE[m]

∂ψ∗p,dp [m]

∂dp

N∑
n=1

anϕn,TE[m]ψn,dn [m]

}
. (54)

Here we have got the entries of Fp,q(θ) above its diagonal, and the rest of the entries are the

conjugate transpose of the upper triangular part.

F (θ) =


Fa,a Fa,d Fa,φ0

FH
a,d Fd,d Fd,φ0

FH
a,φ0

FH
d,φ0

Fφ0,φ0

 . (55)

C. Matrix Derivation of CRB

In deriving the CRB entrywisely, we see the formulations are much complicated due to a large

number of summations. If we utilize matrix derivatives, the labor can be greatly reduced.

Rewrite the signal model in matrix form.

s = eiφ0Za + ξ, (56)
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where Zm,n = ϕn,TE[m]ψd,dn [m], m = 0, . . . ,M − 1, n = 1, . . . , N and

s =


s[0]

s[1]
...

s[M − 1]

 , a =


a1

a2

...

aN

 ,d =


d1

d2

...

dN

 , ξ =


ξ[0]

ξ[1]
...

ξ[M − 1]

 . (57)

I will not keep these variables bold face hereafter for simplicity. Then the likelihood function is

lnL(s) = const− 1

σ2
‖ξ‖2. (58)

According to my previous weekly summary (week 12) of the gradient calculation of least squares

problems, we have

5θlnL = − 1

σ2
(JHξ + (JHξ)∗), (59)

where J is the jacobian matrix of ξ over θ (denote the Fisher Information matrix by another

notation F to avoid conflict).

J =
∂ξ

∂θ

= [ ∂ξ
∂a

∂ξ
∂d

∂ξ
∂φ0

]

= [ −eiφ0Z −eiφ0DA −ieiφ0Za ], (60)

where

D = [ ∂Z1

∂d1
. . . ∂ZN

∂dN
], (61)

A =


a1 0 · · · 0

0 a2 · · · 0
...

... . . . ...

0 0 · · · aN

 . (62)

By (3) and (59), we have

F = E
{

(5θlnL) (5θlnL)H
}

=
1

σ4
E
{

(JHξ + (JHξ)∗)(ξHJ + (ξHJ)∗)
}

=
2

σ2
Re{JHJ}. (63)
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Using (60), we have

Fa,a(θ) =
2

σ2
Re{ZHZ}, (64)

Fd,d(θ) =
2

σ2
Re{AHDHDA}, (65)

Fφ0,φ0(θ) =
2

σ2
Re{aHZHZa}, (66)

Fa,d(θ) =
2

σ2
Re{ZHDA}, (67)

Fa,φ0(θ) = − 2

σ2
Im{ZHZa}, (68)

Fd,φ0(θ) = − 2

σ2
Im{AHDHZa}. (69)

Finally

F (θ) =


Fa,a Fa,d Fa,φ0

FH
a,d Fd,d Fd,φ0

FH
a,φ0

FH
d,φ0

Fφ0,φ0

 . (70)
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