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Constrained Spectral Estimation for Magnetic
Resonance Spectroscopic Imaging

Qiang Ning

Abstract—Spectral estimation is an important problem
in MR Spectroscopic Imaging (MRSI). Although existing
methods have effectively taken advantage of the linear
prediction structure of MRSI signals, which has indeed
improved spectral estimation over nonparametric methods,
very limited attention has been paid to exploiting both
the spectral and spatial characteristics of the spectral
parameters. As a result, spectral estimation remains a
challenging problem now, especially for low signal-to-noise
ratio (SNR) scenarios. This work addresses the spectral
estimation problem in MRSI by jointly estimating the
spectra over all the voxels of interest, incorporating both
spectral constraints (in the form of basis functions) and
spatial regularization. Both simulated and experimental
MRSI data have been used to demonstrate the proposed
spectral estimation method.

Index Terms—MRSI, constrained spectral estimation

I. INTRODUCTION

MRSI is a unique, non-invasive tool to acquire in
vivo biochemical information without using molec-
ular probes or radionuclide tracers. In contrast to
MRI, which acquires anatomical information, MRSI
integrates the capability of MRI and MR Spec-
troscopy to obtain a spectrum at each spatial loca-
tion (Fig. 1). These spectra have proved to be very
valuable biochemical information about the tissue,
which can be used for the detection, diagnosis, and
treatment of diseases [1], [2], and for fundamental
sciences like metabolomics [3]. However, the inher-
ent low sensitivity of MR scans and the resulting
low SNR make spectral estimation for MRSI a
challenging problem in practice.

A simple and still widely used spectral estimation
method is to directly Fourier transform d(x, t),
but its practical use is often limited to MRSI
experiments with high SNR. Since MRSI signals
follow a damped complex sinusoidal model, linear
prediction–based methods can also be used for
spectral estimation. However, very limited attention
has been paid to exploiting both spectral and spatial
prior knowledge of the MRSI signals (e.g., smooth-
ness of the metabolite distribution). This work hence

addresses the spectral estimation problem by incor-
porating both spectral and spatial prior information
acquired beforehand, which significantly reduces
the degree of freedom of the parameter space and
leads to better estimation results. The improvement
of the proposed method is validated using both a
simulation dataset and an in vivo experiment.

Fig. 1. Example MRSI data acquired from a healthy human subject.

II. BACKGROUND

Mathematically, MRSI can be viewed as a spec-
tral estimation problem formulated as

d(x, t) =

∫
ρ(x, f)ej2πftdf + n(x, t), (1)

where d(x, t) is the measured data in the time-
domain, ρ(x, f) is the desired spectrum, and n(x, t)
represents additive Gaussian noise. The main chal-
lenge for MRSI lies in the extremely low SNR.

Over the past few decades, researchers have made
significant efforts to address this spectral estima-
tion problem. There are two primary categories
of existing spectral estimation methods for MRSI:
nonparametric methods and parametric methods. An
early nonparametric method was to perform the
Fourier transform, that is,

ρ̂(x, f) =

∫
d(x, t)e−j2πftdt.

The corresponding metabolite at spatial location x
would then be simply calculated as the area beneath



2

the corresponding peak in ρ̂(x, f). In high-SNR
scenarios, the Fourier transform method is useful
and efficient; however, the SNR is often so low
in practice that the peak locations cannot even be
identified within the resulting spectrum, much less
accurate peak values.

Common parametric approaches rely on a
damped complex sinusoidal model for MRSI sig-
nals [4], [5]:

ρ(x, f) =

∫ ( L∑
l=1

al(x)e−θl(x)t−j2πfl(x)t

)
e−j2πftdt,

or in the time-domain,

ρ(x, t) =
L∑
l=1

al(x)e−θl(x)t−j2πfl(x)t, (2)

where al(x), θl(x), and fl(x) are the concentration,
damping factor, and resonance frequency, respec-
tively, of the lth peak at location x, and where

d(x, t) = ρ(x, t) + n(x, t).

This model motivates the application of linear
prediction–based methods for spectral estimation,
such as LPSVD [4], HSVD [5], and HLSVD [6]. Let
dx[m] denote d(x,m∆t), i.e., the discretized time
sequence at location x. Then the LPSVD method,
for instance, says that ∀x, dx[m],m = 0, 1, . . . ,M−
1(M > L), satisfies the following equation

dx[L− 2] dx[L− 3] · · · dx[0]
dx[L− 1] dx[L− 2] · · · dx[1]

...
...

. . .
...

dx[M − 2] dx[M − 3] · · · dx[M − L]




β1
β2
...
βL



=


dx[L− 1]
dx[L]

...
dx[M − 1]

 ,
from which we can determine the linear prediction
coefficients β1, . . . , βL by solving the linear equa-
tion in the least squares sense (or in the total least
squares sense). Rooting the polynomial equation

zL + β1z
L−1 + · · ·+ βL−1z + βL = 0,

yields estimates of the “poles” in (2). The linear
parameters (i.e., al(x)) can then be determined by
projecting d(x, t) onto the subspace spanned by
{e−θl(x)t−j2πfl(x)t}Ll=1. By using a parametric model,
linear prediction–based methods can perform bet-
ter spectral estimation than nonparametric methods.

However, an inherent drawback of those methods
is their limitation in incorporating prior knowledge
(despite the existence of some variants of linear pre-
diction methods that can impose some special forms
of prior knowledge, e.g., [7], [8]). This limitation
strongly prohibits linear prediction methods from
being applied to low-SNR scenarios, which is often
the case in practice.

III. PROPOSED METHOD

In contrast to linear prediction–based methods,
we address the spectral estimation problem for
MRSI by incorporating both spectral and spatial
prior knowledge. The prior knowledge can greatly
reduce the parameter search space, helping to im-
prove the estimation variance of the parameters.

A. Model

We propose to impose spectral constraints in the
form of spectral basis functions. This is motivated
by the fact that within one spectrum ρ(x, f), dif-
ferent peaks originating from the same metabolite
should be related to each other in terms of their
concentration ratios, damping factors, and frequency
locations (for example, Fig. 2 shows the spectra
of several typical basis functions). Without loss
of generality, d(x, t) can be modeled using basis
functions

d(x, t) =
N∑
n=1

an(x)e−θn(x)tϕn(t) + n(x, t), (3)

where ϕn(t) is the so-called basis function for
the nth metabolite, which can be accurately ob-
tained beforehand using quantum simulation (e.g.,
GAVA [9]). Obviously, the introduction of basis
functions ϕn(t) greatly reduces the dimension of
the parameter space.

B. Formulation

Note that in the discrete case, (3) can be written
in a more compact, vector-matrix form

dx = K(θx)ax + nx,

where dx and nx contain all the data and noise at
location x, where ax and θx are the concentration
vector and damping factor vector at x, where K(·)
represents the model matrix with basis functions,
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Fig. 2. Example spectra of basis functions and molecular structures of
N-acetyl aspartate (NAA), creatine, and myo-inositol, three common
metabolites in human brains [3].

and where x = x1, . . . ,xP (for P total loca-
tions of interest). Instead of independently perform-
ing spectral estimation point-by-point (as existing
methods do), we propose to perform joint spectral
estimation incorporating prior spatial information.
Specifically, let d = [dTx1

, dTx2
, · · · , dTxP

]T , a =
[aTx1

, aTx2
, · · · , aTxP

]T , θ = [θTx1
, θTx2

, · · · , θTxP
]T ,

and

K(θ) =

 K(θx1)
. . .

K(θxP
)

 .
We formulate the spectral estimation problem as

(â, θ̂) = arg min
a,θ
‖d−K(θ)a‖22 + R(a,θ), (4)

where R(a,θ) is a regularization functional impos-
ing spatial constraints on a and θ. This incorpo-
ration of spatial prior knowledge can help further
reduce the parameter search space and improve the
spectral estimation results.

In this work, we limit our focus to imposing
smoothness constraints on the concentration vector
a, although other spatial constraints are possible.
The use of smoothness constraints is motivated by
the fact that in most biological samples, there are
only a few tissue types, inside which metabolites

should spatially have rather smooth concentrations.
Using this motivation, we can use an `1-regularizer
for R(a,θ). More precisely, we reformulate the
problem in (4) as:

(â, θ̂) = arg min
a,θ

1

2
‖d−K(θ)a‖22 + η‖W{a}‖1,

(5)
where η is a regularization parameter and W is an
operator representing the wavelet transform, total
variation (TV) transform, or total generalized vari-
ation (TGV) transform [10], etc. We found TGV
to be suitable for metabolite concentration maps,
promoting piecewise smoothness, although it could
be easily replaced by another sparsifying transform.

C. Algorithm
The joint quantitation problem in (5) is a non-

linear least squares problem regularized by an `1
term, so we solve it using a modified alternating
direction method of multiplier (ADMM) [11]. For
notation convenience, we present the algorithm for
the case that W{a} in (5) is a linear operator of a
(e.g., the wavelet and TV transform) and can thus
be represented in a matrix form, i.e., W{a} = Wa.
The proposed algorithm can be easily extended to
the case that W{a} represents the TGV transform
as in [10].

As proposed by Guo et al. [11], we introduce an
auxiliary variable u, so that (5) is equivalent to

min
a,θ,u

1

2
‖d−K(θ)a‖22 + η‖u‖1, s.t. u = Wa. (6)

We then decompose (6) into the following sub-
problems, whose convergence is guaranteed by the
classic ADMM algorithm [12]:

u(n+1) = arg min
u
‖u‖1 +

µ

2η
‖u−Wa(n) − ũ(n)‖22,

(7)
(a(n+1),θ(n+1)) = arg min

a,θ
f(a,θ), (8)

ũ(n+1) = ũ(n) + γ(Wa(n+1) − u(n+1)), (9)

where

f(a,θ) = µ‖x(n+1)−(Wa+x̃(n))‖22+
1

2
‖d−K(θ)a‖22.

(10)
Subproblem (7) can be solved explicitly using

shrinkage:

x(n+1) = shrinkage(Wa(n) + x̃(n), η/µ), (11)
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where we define

shrinkage(v, η) = v. ∗max (1− η./|v|, 0).

Subproblem (8) is a challenging nonlinear opti-
mization problem. We use the variable projection
strategy [13] to efficiently solve the problem. More
specifically, we solve the following two-step prob-
lem instead:

θ(n+1) = arg min
θ
f(aopt(θ),θ), (12)

a(n+1) = aopt(θ
(n+1)), (13)

where aopt(θ) , arg mina f(a,θ) is a quadratic
problem and has a closed-form solution:

(βK(θ)HK(θ) + µWHW)aopt(θ) =

βK(θ)Hd + µWHu, (14)

where u = x(n+1) − x̃(n). Eq. (12) is a nonlinear
least squares problem, which we solve using the
classic descent method where only the gradient is
required. The derivative of daopt/dθ can be obtained
by taking derivative of both sides of (14),

(βKHK + µWHW)
∂aopt

∂θ
=

β
∂KH

∂θ
(d−Kaopt)− βKH ∂K

∂θ
aopt. (15)

Finally, the subproblem (9) is only an updating
operation.

IV. RESULTS AND DISCUSSION

A. Validation with Simulated MRSI Data

The performance of the proposed joint spec-
tral estimation method has been evaluated on a
simulated MRSI dataset. The quantification results
are compared with HSVD [5], a standard lin-
ear prediction–based method that has been widely
used in practice, which performs spectral estimation
voxel-by-voxel without incorporating spectral and
spatial priors.

The dataset consists of five representative
metabolites of interest: N-acetyl aspartate (NAA),
creatine (Cr), choline (Cho), glutamate/glutamine
(Glx), and myo-inositol (mI). Fig. 3a) shows a typi-
cal comparison between the ground truth, HSVD,
and the proposed method, based on the spectral
estimation results of the concentration map (i.e.,
vector a) of NAA, Cr, and Glx, and Fig. 3b)

HSVD Proposed Ground Truth 

4 3 2 4 3 2 4 3 2 
ppm 

Fig. 3. Simulation results: a) the metabolite concentration maps for
NAA, creatine, and Glx (glutamate/glutamine), respectively; and b)
three spectra at the three spatial locations marked by red dots in a),
demonstrating the typical SNR levels of the simulated data.

demonstrates the typical SNR levels of the simula-
tion, which have been selected to represent realistic
MRSI measurements. From Fig. 3, we can see that
the estimation results of HSVD still had large spatial
variations, while the proposed method significantly
reduced the estimation variance. Therefore, the pro-
posed method had a visually more robust estima-
tion to the ground truth. Fig. 4 illustrates that the
proposed method produced better fitting compared
to existing methods. It shows one typical set of
synthetic spectra from the true spectral parameters
and from the estimated parameters for one specific
voxel. As can be observed from the second row,
the synthetic spectrum estimated by HSVD showed
noticeable errors, which were significantly reduced
by using the proposed method incorporating spatial
prior information.

B. Validation with Experimental MRSI Data
To further validate the proposed method, we

acquired an in vivo dataset from a healthy volunteer
on a 3.0 Tesla scanner using an echo-planar spec-
troscopic imaging (EPSI) sequence with a 30 ms
echo time. Fig. 5 shows the NAA and creatine maps
obtained using HSVD and the proposed method.
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Ground Truth HSVD Proposed 

Fig. 4. The first row shows the spectra synthesized using the true
spectral parameters from the simulation phantom in Fig. 1, and
the estimated parameters from HSVD and the proposed method,
respectively. The second row shows the difference between the
estimated spectra and the true one.

As can be seen, the metabolite concentration maps
estimated by HSVD showed large spatial variations,
including noisy “spikes” at some locations that are
biologically unrealistic. As expected, the proposed
method significantly reduced the estimation vari-
ance compared to HSVD. The performance im-
provement of the proposed method observed from
the experimental data was consistent with the sim-
ulation results in Fig. 3.

HSVD Proposed 

Fig. 5. Results from in vivo MRSI data. The concentration maps
for two metabolites, NAA (top) and creatine (bottom), are presented.
Note that the HSVD results show significant spatial variations (indi-
cating large estimation variance), which are reduced considerably by
using the proposed method.

V. CONCLUSION

Spectral estimation is a key underlying problem
in MRSI, which can have great impact on clinical
applications and physiological scientific researches.
Existing methods take advantage of the linear pre-
diction structure of MRSI signals and obtain im-
proved results compared with nonparametric meth-
ods. However, by solving the spectral estimation
problem voxel-by-voxel, they treat the metabolic

information at different voxels as independent from
each other. Therefore, we have proposed a novel
method to address MRSI spectral estimation as a
joint estimation problem, so that various prior in-
formation on spectral and spatial characteristics can
be incorporated. Preliminary results show that the
proposed method produced significantly improved
spectral estimation results over linear prediction.
The proposed spectral estimation method should
prove useful in many practical studies.
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