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Abstract

One-class classification is a special kind of classification problem, for which the training

set only consists of samples from one class. Conventional SVM fails to handle the one-class

classification problem because of the lack of information from the other class. The ν-SVM

addresses this issue by estimating the probability density support of the class that we have

sufficient samples, and then treat new samples outside of the support as outliers. The resulting

optimization problem can be readily solved in a similar way as the conventional SVM, and its

generalization error can also be theoretically upper bounded. Both simulation and real medical

data are used to demonstrate the performance of ν-SVM in this report, which should prove

useful in various outlier/abnormity detection tasks.

1 Introduction

Classification is to differentiate objects and understand information. When the underlying proba-

bility distribution is readily available, classification tasks can be easily handled within the Bayesian

framework. For instance, in binary classification/detection, given prior distribution πy, y = {±1},
and conditional distribution py(x), y = {±1}, where x ∈ Rd is observation and y is class label, the

optimal classifier that minimizes the “0-1” loss is a likelihood ratio test:

δB(x) =

1 if L(x) ≥ η
−1 otherwise

,

where L(x) = p1(x)/p−1(x) is the likelihood ratio function, and η = π−1/π1 is the testing threshold

[1].

In practice, however, the underlying probability distribution is usually unavailable due to the

lack of knowledge about the physical and statistical law governing different classes of observations.

On the other hand, observation data can often be easily collected. Therefore, it has been pro-

posed to “learn” a classifier based on existing observations (i.e., the training dataset), with the

hope/assumption that a classifier that separates the training dataset well can also classify future

observations (i.e., the test dataset) well. Various classification methods have been proposed along

1



this way: empirical risk minimization (ERM), support vector machine (SVM), logistic regression,

neural network, etc. [2]

Nevertheless, in some real world applications, e.g., outlier detection, not only the underlying

probability distribution is unavailable, but it is also very expensive or even impossible to collect

data from both two classes. As a result, the training set only consists of data from one class (or

the data from the other class are insufficient). The classification problem in this scenario is often

called the one-class classification problem. The so-called ν-SVM, which we are going to explore in

this report, is one of the popular methods to solving this problem [3]. Throughout this report, we

would refer binary and multi-class classification problem as the conventional classification problem.

2 Challenges

As implied by its name, one-class classification problem is challenging, because no (or insufficient)

information about the outliers is available and conventional classification methods cannot be used.

To better illustrate this point, we take the conventional SVM (here we focus on the maximum-

margin classifier) as an example. As in [2], the maximum-margin classifier is to construct a classifier

δ : Rd 7→ {±1} such that

δ(x) = sgn [g(x)] ,

where the discriminant function g(x) = wTx+w0.
1 Given a training set with n samples, {Xi, Yi}ni=1,

where Xi ∈ Rd and Yi ∈ {±1}, for all i, the weight vector w and bias w0 are obtained through

solving the following optimization problem:

min
w,w0

1

2
‖w‖22

s.t. yi
[
wTxi + w0

]
≥ 1, i = 1, . . . , n.

If all the training samples are from class “+1”, i.e., yi = 1 for all i, then obviously the solution

is w? = 0 and any w?0 ≥ 1, and the resulting classifier is δ(x) ≡ 1. Therefore, if we directly

apply the conventional SVM to one-class classification, the resulting classifier will have no power

in identifying outliers.

This failure of applying conventional SVM (and other conventional classification methods as

well) to one-class classification can be explained by the fact that the conventional classification

methods are designed to “separate” different classes. When no or few training samples are from

class “−1”, separation can be trivially satisfied, and the generalizability of the trained classifier is

thus poor. Conceptually speaking, in conventional classification methods, description about one

class is learnt via comparison to other classes, rather than the class itself. In one-class classification,

the problem becomes challenging because we need to learn a description about a class itself. An

1We can also play the kernel trick here, i.e., replacing x by Φ(x), where Φ : Rd 7→ Rk is a mapping from input

space to feature space.
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extreme point is to estimate the probability density from a training set, which would then allow

us to solve whatever outlier detection problems. However, probability density estimation itself is

still an open problem in the learning theory. One of the major drawbacks of probability density

methods is the requirement for a large training set, especially when dealing with high-dimensional

features.

To address this issue, ν-SVM is proposed in [3], which turns to solve an alternative problem:

probability density support estimation. It learns a domain description about the one-class training

set, and then use the domain description to detect outliers. The generalization error of ν-SVM can

also be bounded theoretically.

3 One-class Classification: ν-SVMs

Following Vapnik’s principle that never to solve a problem that is more general than the one we

actually need to solve, ν-SVM is actually estimating the support of the probability density (i.e., a

“smallest” region), instead of estimating the probability density. Specifically, the ν-SVM method

is to separate the data from the origin with maximum margin (that is where the “SVM” in its

name comes from). The strategy is to find a “smallest” region capturing most of the data points,

so that within that region, the classifier decides “1”, and otherwise decides “−1” (outlier). Next

we describe the ν-SVM method by its formulation and algorithm.

3.1 Formulation

Given a training set with n samples, {xi}ni=1 where xi ∈ Rd, ν-SVM is to solve the following

problem:

min
w,ρ,ξ

1

2
‖w‖22 +

1

νn

n∑
i=1

ξi − ρ (1)

s.t. wTΦ(xi) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n,

where ν ∈ (0, 1], and Φ(·) is the transformation from input space to feature space. The decision

function is

δ(x) = sgn [g(x)] , (2)

where the discriminant function g(x) = wTΦ(x)−ρ. By formulating Eq. (1), we are expecting that

for most training samples, the discriminant function is positive, while maintaining a small value of
1
2‖w‖22 − ρ. The trade-off between these two goals is controlled by ν.

Let us first assume the slack variables ξi are zero, which would be true when ν = 0. One

significant difference between ν-SVM and SVM is the introduction of ρ. To understand why the

introduction of ρ leads to a desirable classifier, we see that in Fig. 1, it can be derived that

d =
|ρ|
‖w‖ .
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The minimization of −ρ is equivalent to the maximization of ρ. If a data point lies above the line

(e.g., point A in Fig. 1), then ρ > 0, and a larger ρ indicates a larger d; if a data point lies below

the line (e.g., point B in Fig. 1), then ρ < 0, and a larger ρ indicates a smaller d. In both cases, the

discriminant line is moving toward the data point. Therefore, it can be seen that the introduction

of ρ leads to a discriminant function that tightly bounds the training set.

Additionally, to handle the case where there are outliers in training set, slack variables ξi are

introduced, similarly to what we did for soft-margin SVM [2]. As stated earlier, the trade-off

between data consistency and boundary tightness is controlled by ν, but actually ν is more than

simply a regularization parameter, which will be shown later in this report.

x1o

d

A

B

x2

g(x) = wTx− ρ = 0

w

Figure 1: The normal vector of discriminant boundary g(x) = 0 is w. The distance d from origin

to the boundary is thus d = |ρ|/‖w‖. If point A lies in the region g(x) > 0, then origin should

satisfy g(0) = −ρ < 0, and ρ is thus positive; if point B lies in the region g(x) > 0, then origin

should satisfy g(0) = −ρ > 0, and ρ is thus negative.

3.2 Dual Problem

Problem Eq. (1) is referred to as the primal optimization problem. As what we did for conventional

SVM, it is usually preferable to deal with its dual problem.

Firstly, we introduce a Lagrangian with αi, βi ≥ 0

L(w, ξ, ρ,α,β) =
1

2
‖w‖22 +

1

νn

∑
i

ξi − ρ−
∑
i

αi(w
TΦ(xi)− ρ+ ξi)−

∑
i

βiξi, (3)
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whose first derivatives w.r.t. the primal variables w, ξ and ρ are

∂L

∂w
= w −

∑
i

αiΦ(xi)

∂L

∂ξi
=

1

νn
− αi − βi, i = 1, . . . , n,

∂L

∂ρ
= −1 +

∑
i

αi.

Then by setting these derivatives to zero, we have

w =
∑
i

αiΦ(xi), (4)

αi =
1

νn
− βi ≤

1

νn
, i = 1, . . . , n, (5)∑

i

αi = 1. (6)

Substituting Eq. (4), Eq. (5) and Eq. (6) into Eq. (3), we obtain the dual problem:

min
α

1

2

n∑
i,j=1

αiαjk(xi,xj) (7)

s.t. 0 ≤ αi ≤
1

νn
, i = 1, . . . , n, and

∑
i

αi = 1,

where k(xi,xj) = Φ(xi)
TΦ(xj) is the kernel function. As the primal problem Eq. (1), Eq. (7)

is also a quadratic programming. Fast iterative algorithms exist for the dual problem Eq. (7).

An algorithm originally proposed for classification is the so-called sequential minimal optimization

(SMO) algorithm [4]. To solve Eq. (7) specifically, a modified version of SMO is proposed and can

be found in [3][5].

Once an optimizing α? is obtained by solving Eq. (7), we can recover w? using Eq. (4). As for

ρ, we notice the fact that the constraints in Eq. (1) become equalities if αi and βi are positive, i.e.,

0 < αi <
1
νn . Pick any one of such indices i, then

ρ? = (w?)TΦ(xi) =

n∑
j=1

α?jk(xj ,xi).

4 Theory

Very nice theoretical results have been proven in [3]. In this report, we focus on two of the theorems

introduced in [3], and go through the proofs. For Theorem 1, an alternative proof is provided instead

of the original one provided in [3]. For Theorem 2, we fill up the blanks that the authors left behind

and correct typos.
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Theorem 1 (ν-Property). Assume the solution to Eq. (1) satisfies ρ 6= 0. The following statements

hold:

1. ν is a lower bound on the fraction of support vectors.

2. ν is an upper bound on the fraction of outliers.

Proof. To prove the two properties, the authors of [3] used a proposition which relates the w and

ρ obtained in one-class classification with those obtained in corresponding binary classification.

Here, however, we can prove them alternatively as follows. Let I = {i : αi 6= 0}. From Eq. (5)

and (6), we have

1 =
n∑
i=1

αi =
∑
i∈I

αi =
|I|
νn
−
∑
i∈I

βi ≤
|I|
νn
.

Therefore, |I| ≥ νn, i.e., the number of nonzero αi’s is lower bounded by νn. Note that nonzero

αi’s correspond to support vectors, so property 1 holds.

Let J = {j : βj = 0}. Again from Eq. (5) and (6), we have

1 =
n∑
i=1

αi =
n∑
i=1

1

νn
− βi =

|J |
νn

+
∑
j /∈J

αj ≥
|J |
νn

.

Therefore, |J | ≤ νn, i.e., the number of zero βi’s is upper bounded by νn. Note that zero βi’s

correspond to outliers (ξi > 0), so property 2 holds.

Besides the ν-property which reveals the underlying meaning of regularization parameter ν, the

learning generalizability of ν-SVM in terms of probability density support estimation can also be

characterized as follows.

Definition 1. Let f : X 7→ R. For a fixed θ ∈ R and x ∈ X , let d(x, f, θ) = max{θ − f(x), 0}.
Then for a training set T = {xi}ni=1, define

D(T, f, θ) =
∑
x∈T

d(x, f, θ).

Theorem 2 (Generalization Error Bound). Assume we are given a training set T = {xi}ni=1

generated i.i.d. from an underlying but unknown distribution P which does not contain discrete

components. Suppose a function fw(x) = wTΦ(x) and bias ρ are obtained by solving the optimiza-

tion problem Eq. (1). Let Rw,ρ = {x : fw(x) ≥ ρ} denote the decision region. Then with probability

1− δ over the draw of a random sample from P , for any γ > 0,

P{x′ : x′ /∈ Rw,ρ−γ} ≤
2

n
(k + log2

n2

2δ
), (8)

where

k =
c1log2(c2γ̂n)

γ̂2
+

2D
γ̂

log2

(
e

(
(2n− 1)γ̂

2D + 1

))
+ 2, (9)

c1 = 16c2, c2 = ln 2/(4c2), c = 103, γ̂ = γ/‖w‖, and D = D(T, fw, ρ).
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A training set T determines a decision region Rw,ρ, so that if a new sample falls into Rw,ρ,

we assert it is generated from distribution P ; otherwise, we assert it is an outlier. We make

such assertions because we expect that points generated according to P will indeed lie in Rw,ρ.

Theorem 2 gives us such a guarantee that with a certain probability (i.e., 1− δ), the probability of

a new sample lies outside of the region Rw,ρ−γ is bounded from above. Moreover, Theorem 2 also

serves as a characterization of ν-SVM, from which we can gain the following insights.

1. The theorem suggests not to directly use the offset ρ obtained by solving Eq. (1), but a smaller

value ρ− γ, which corresponds to a larger decision region Rw,ρ.

2. If D = 0, then as n → ∞, the bound in Eq. (8) goes to zero, i.e., the complete support is

obtained asymptotically. However, D is measured with respect to ρ, while the bound applied

to a larger region Rw,ρ−γ . Any point in Rw,ρ−γ −Rw,ρ will contribute to D. Therefore, D is

strictly positive, and this bound does not imply asymptotic convergence to the true support.

3. The existence of ν is to allow outliers in the training set, and to improve robustness. Since a

larger ν indicates a larger D, hence a larger k, we see that an unecessarily large ν will lead to

a larger bound. Therefore, prior knowledge about the percentage of outliers in the training

set is desired.

The proof of Theorem 2 requires concepts of covering number and function spaces, and can be

found in the Appendix.

5 Experiments

A comprehensive off-the-shelf package for SVM is the LIBSVM [6], in which ν-SVM is also available.

5.1 ν-Property

In this section, we wish to verify the ν-property in Theorem 1. A crescent-shaped two-dimensional

simulation dataset from [7] is used, of which the 500 samples are shown in Fig. 2.

An example of using ν-SVM to do one-class classification is shown in Fig. 3, where the Gaussian

kernel

k(x,y) = e−0.06‖x−y‖
2

was used, and ν was 0.05. We can see that a smooth, crescent-shaped decision boundary (blue

curve) was learned, which tightly bounds a large portion of the training samples, while allowing a

certain portion of outliers (black stars).

Using the same kernel function, the fraction of support vectors (SVs) and outliers (OLs) given

different values of ν is summarized in Table 1 to verify Theorem 1. It can be seen from Table 1

that the fraction of SVs was lower bounded by ν. Moreover, the fraction of OLs is approximately
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Figure 2: A simple 2-dimensional dataset with 500 samples from [7]. Blue circle: training sample.

Figure 3: An example of using ν-SVM to learn a smallest region that captures most of the points.

Blue curve: decision boundary obtained. Black star: outliers.
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upper bounded by ν, inspite of some small fluctuations (e.g., when ν = 30%, 70%) which can be

explained by the fact that we are not in the asymptotic regime. Table 1 does indicate that ν can

be used to approximate/control the fraction of SVs and OLs.

Table 1: The fraction of SVs and OLs given different values of ν.

ν (%) Fraction of SVs (%) Fraction of OLs (%)

5 6.2 5.0

10 11.0 10.0

30 31.6 30.2

50 50.2 49.8

70 70.2 70.2

90 90.2 90.0

5.2 Breast Cancer Classification

A dataset retrieved from the Wisconsin Breast Cancer Databases from UCI is used to demonstrate

the performance of ν-SVM. 2 It contains 699 instances in total collected between 1989 and 1991

by Dr. WIlliam H. Wolberg at University of Wisconsin Hospitals [8], 458 instances of which

correspond to benign breast cancer, and 241 of which malignant. The dimensionality of feature

space is 9: clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,

single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses, all quantized

from 1 to 10. Figure 4 is the scatter plot of the dataset after dimensionality reduction by PCA.

Figure 4: Scatter plot of the breast cancer dataset. Original data were projected onto the first

two principal eigenbases of the empirical covariance marix. A natural clustering of benign and

malignant can be observed.

2Link to data: http://homepage.tudelft.nl/n9d04/occ/505/oc_505.mat
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Table 2 summarizes the performance of ν-SVM compared with conventional binary SVM. When

the training set has an insufficient number of malignant instances, there are usually two options to

do classification. One is to still train conventional SVMs using the whole dataset, and the other one

is to alternatively train ν-SVMs using only the benign instances in the training set. By comparison

between the first two rows, we can tell that it is better in terms of detecting malignant cancers if

we only use benign instances and train ν-SVMs.

By comparing ν-SVM (row 2) with row 3-5 in Table 2, we can also see that when the size of

the training set remains the same, one may prefer using one-class classification if the detection of

outliers is more important, unless sufficient numbers of samples are available for both classes (e.g.,

row 6). Figure 5 provides a visual explanation to why ν-SVM is a better choice when dealing with

“unbalanced” learning tasks. Therefore, we can see the importance of using one-class classification

when information from one class is insufficient.

Table 2: The performance of ν-SVM. The left two columns represent the number of be-

nign/malignant instances used in the training set. The right two columns are the probability

of detection of benign cancer, and the probability of detection of malignant cancer, respectively.

The row in bold face represents ν-SVM.

# Benign # Malignant Detection of Benign (%) Detection of Malignant (%)

300 20 100.0 87.2

300 0 97.5 96.5

290 10 100.0 45.4

280 20 100.0 87.9

270 30 99.4 96.5

200 100 99.4 97.9

6 Discussion

We have seen the importance of using one-class classification methods to deal with the learning

tasks where the training set only has one class. As one popular one-class classification method,

ν-SVM can be proved to be equivalent to another method named SVDD: Support Vector Domain

Description [9].

6.1 SVDD

Suppose the description about a data set T = {xi}ni=1 is required. While ν-SVM is to bound

the data set using hyperplanes, SVDD is to use spheres instead. Specifically, we wish to find a

“smallest” ball that most of the data points in T can be put into. The resulting primal optimization
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(a) (b)

(d)(c)

(e) (f)

Figure 5: (a) Trained ν-SVMs using 300 benign samples, and (b) its performance on test set;

(c)(e) Trained soft-margin SVMs using 290 benign samples plus 10 malignant samples, and 200

benign samples plus 100 malignant samples, respectively, and (d)(f) their performances. Blue:

benign samples. Red: malignant samples. Circle: training samples. Cross: test samples. Black

curve: decision boundary obtained accordingly. Note when only an insufficient number of malignant

samples are available, ν-SVM can find a decision boundary that tightly bounds the benign samples

as in (a). However, conventional SVM will be significantly impaired, unless sufficient number of

samples from both classes are available as in (e).
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problem is

min
R,ξ,c

R2 + C
n∑
i=1

ξi (10)

s.t. ‖Φ(xi)− c‖2 ≤ R2 + ξi, ξi ≥ 0, i = 1, . . . , n,

where c and R is the center and radius of the desired ball, ξ is the slack variable, and C is a

regularization parameter balancing the trade-off between ball radius and data consistency. The

dual problem is thus

min
α

n∑
i,j=1

αiαjk(xi,xj)−
n∑
i=1

αik(xi,xi) (11)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n, and
n∑
i=1

αi = 1.

6.2 Relation to ν-SVM

The method of SVDD addresses the same problem in a different way, but interestingly, is closely

related to ν-SVM. We describe its relation to ν-SVM be the following theorem.

Theorem 3 (Connection between ν-SVM and SVDD). If k(x,y) only depends on x− y, then the

solution to ν-SVM is the same with that to SVDD, with ν = 1
nC .

Proof. Firstly, it is obvious that if k(x,y) only depends on x− y, then k(x,x) will be a constant.

If ν is further set to be 1
nc , then (7) and (11) will be exactly the same problem. Therefore, the

optimizing α will be the same for both methods. Then we only need to show that the decision

functions of ν-SVM and SVDD coincide given the same α.

We already know that

δν−SVM (x) = sgn

[∑
i

αik(xi,x)− ρ
]
,

δSV DD(x) = sgn

R2 −
∑
i,j

αiαjk(xi,xj) + 2
∑
i

αik(xi,x)− k(x,x)

 .
Let xm be one of the points that have 0 < αm < C = 1

νn . Then we have

ρ =
∑
i

αik(xi,xm),

R2 =
∑
i,j

αiαjk(xi,xj)− 2
∑
i

αik(xi,xm) + k(xm,xm).
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Therefore,

δν−SVM (x) = sgn

[∑
i

αik(xi,x)−
∑
i

αik(xi,xm)

]
,

δSV DD(x) = sgn

[
2
∑
i

αik(xi,x)− 2
∑
i

αik(xi,xm) + k(xm,xm)− k(x,x)

]
.

Since k(xm,xm) = k(x,x) and sgn [g(x)] = sgn [2g(x)], we have

δν−SVM (x) ≡ δSV DD(x).

Theorem 3 is consistent with our intuition since when k(x,y) only depends on x − y, then

all the mapped patterns lie on a sphere in the kernel space. Therefore, the smallest sphere found

in SVDD can be equivalently segmented by a hyperplane (ν-SVM). It is rather important, not

only because it theoretically relates two popular one-class classification methods, but also implies

that the generalization error bound derived for ν-SVM also works for SVDD, and some parameter

selection methods for SVDD (e.g., [7]) can also be applied to ν-SVM.

7 Conclusion

One-class classification, also known as the data domain description, is not only a classification

problem, but also an important step towards learning information and understanding knowledge

from training data. The ν-SVM method addresses the one-class classification problem by finding a

“smallest” region (the probability density support) that can bound most of the training samples.

The resulting optimization problem is similar to that of the conventional SVM, and fast iterative

algorithms exist for solving it. Its generalization error has also proved to be bounded from above,

which is a very desirable property of learning algorithms.

In this report, we have provided our own proof for the so-called ν-property (Theorem 1), and

verified it through a simulation data set. The ν-property provides underlying meaning for the

regularization parameter ν, and thus can be leveraged to control the fraction of support vectors

and outliers in practice. Real world data are also used to demonstrate the usefulness of ν-SVM

when dealing with insufficient negative training samples. Results indicate that when there are

insufficient negative samples in the training set, it is better if we only use the positive samples and

resort to one-class classification. We have also proved in Theorem 3 that ν-SVM is equivalent to

another popular one-class classification method, SVDD, under certain circumstances.
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Appendix: Proof of Theorem 2

Before proving Theorem 2, some necessary definitions and lemmas are introduced without proof as

follows.

Definition 2 (ε-Covering Number). Let (X, d) is a metric space, and A ⊆ X. For ε > 0, a set

U ⊆ X is called an ε-cover for A if for every a ∈ A, ∃u ∈ U such that d(a, u) ≤ ε. Then ε-covering

number of A is the minimal cardinality of an ε-cover for A, and is denoted by N (ε, A, d).

Specifically in this report, suppose X is a compact subset of Rd, and F is a linear function space

with the distance defined by the infinite-norm, i.e., for f ∈ F ,‖f‖`∞ = maxx∈T |f(x)|. Then let

N (ε,F , n) , max
T∈Xn

N (ε,F , `∞).

Definition 3. Let L(X ) be the set of non-negative functions f on X with countable support. Define

1-norm on L(X ) by ‖f‖1 ,
∑

x∈supp(f) f(x). Then

LB(X ) , {f ∈ L(X ) : ‖f‖1 ≤ B}.

Lemma 1 (Theorem 14 in [3]). Suppose we are given a training set T = {xi}ni=1 generated i.i.d.

from an underlying but unknown distribution P which does not contain discrete components, where

xi ∈ X , for all i. For any γ > 0, f ∈ F , fix B ≥ D(T, f, θ), then with probability 1− δ

P{x : f(x) < θ − 2γ} ≤ 2

n
(k + log2

n

δ
),

where k = dlog2N (γ/2,F , 2n) + log2N (γ/2, LB(X ), 2n)e.

Lemma 2 (Lemma 7.14 of [10]). For all γ > 0,

log2N (γ, LB(X ), n) ≤ blog2
e(n+ b− 1)

b
,

where b = b B2γ c.

Lemma 3 (Williamson et al. [11]). Let F be the class of linear classifiers with norm at most 1

confined to a unit ball centered at the origin, then for ε ≥ c/√n,

log2N (ε,F , n) ≤ c2log2
(
2 ln 2
c2

ε2n
)

ε2
,

where c = 103.

Using Lemma 1, 2, and 3 as tools, we are now ready to prove Theorem 2.
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Proof of Theorem 2. Note in Theorem 2,

Rw,ρ−γ = {x : fw(x) ≥ ρ− γ},

so we have

{x : x /∈ Rw,ρ−γ} ⇔ {x : fw(x) < ρ− γ}.

Therefore, the idea is to apply Lemma 1 (by replacing 2γ by γ) for proving Theorem 2.

Firstly, notice that we can treat the offset ρ as 0 without loss of generality. Secondly, in order

to invoke Lemma 3 while calculating k in Lemma 1, the linear class F is required to be confined

to a unit ball centered at the origin. Hence, we rescale function f to be f̂ = fw/‖w‖. The decision

boundary remains the same if we also rescale γ̂ = γ/‖w‖.
Since in Lemma 1, B is fixed. However, in Theorem 2, B does not have to be fixed. Hence we

apply Lemma 1 for each value of

dlog2N (γ̂/4, LB(X ), 2n)e. (12)

Because for error bound 2
n(k + log2

n
δ ) to be nontrivial, k has to be smaller than n

2 , so is Eq. (12).

Then it suffices to make at most n
2 applications, and as a result, uses a confidence of δ

n/2 for each

application. Therefore, by Lemma 1, we have

P{x : f̂(x) < −γ̂} ≤ 2

n
(k′ + log2

n2

2δ
),

where

k′ = dlog2N (γ̂/4,F , 2n) + dlog2N (γ̂/4, LB(X ), 2n)ee.

In addtion, letting b =
⌊
2B
γ̂

⌋
and using Lemma 2 and 3, we have

k′ ≤
⌈

16c2log2(
ln 2
4c2
γ̂2n)

γ̂2
+

⌈
blog2

(
e(2n+ b− 1)

b

)⌉⌉

≤ 16c2log2(
ln 2
4c2
γ̂2n)

γ̂2
+ blog2

(
e(2n+ b− 1)

b

)
+ 2

≤ 16c2log2(
ln 2
4c2
γ̂2n)

γ̂2
+

2D
γ̂

log2

(
e(2n+ (2D/γ̂)− 1)

2D/γ̂

)
+ 2

=
16c2log2(

ln 2
4c2
γ̂2n)

γ̂2
+

2D
γ̂

log2

(
e

(
(2n− 1)γ̂

D + 1

))
+ 2

, k.

Then simply by replacing c1 = 16c2, and c2 = ln 2
4c2

, Theorem 2 is proved.
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