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A Summary of Some Interesting Bounds in
Estimation and Learning

Qiang Ning

Abstract—These review notes serve as a guide for myself to
some bounds of interest in the estimation theory and learning
theory, including Cramér-Rao Bound (CRB), concentration in-
equalities, Vapnic-Chervonenkis (VC) theory, probably approx-
imately correct (PAC) learning, and the Johnson-Lindenstrauss
(JL) lemma.

Index Terms—Cramér-Rao Bounds, Concentration Inequali-
ties, VC Dimension, PAC Learning

I. INTRODUCTION

THIS review was generated in February, 2015. When
we were preparing an extended version of our ISBI

paper “Spectral Estimation for Magnetic Resonance Spec-
troscopic Imaging with Spatial Sparsity Constraints”, how
to characterize the performance of our method aroused our
interest. Therefore, we spent some extra time digging into
some interesting bounds, especially in the field of estimation
and learning. This review is just a summary of these bounds.

II. BOUNDS FOR PARAMETER ESTIMATION

A. Basic Settings

Let the parameters of an estimator be a k dimensional vector
x, and measurement data be an n dimensional random vector
Y, which follows the probability distribution function f(Y|x)
or fx(y). X̂(Y) denotes the estimator.

B. Cramér-Rao Bounds

The Cramer-Rao Bound (CRB) that we usually used for
unbiased estimators is

CE(x) ≥ J−1(x), (1)

where

CE(x) = E[(x− X̂(Y))(x− X̂(Y))T ]

is the error correlation matrix of X , and

J(x) = EY[5xlnf(Y|x)(5xlnf(Y|x))T ], (2)

or equivalently (which is proved in [1]),

J(x) = −EY[5x 5Tx lnf(Y|x)], (3)

is the so-called Fisher Information in Y about the parameters
in X. Note in (2) and (3), f(Y|x) is the conditional probability
distribution function of measurement Y on parameters x, and
the gradient operator is defined as
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In practice, the Fisher Information can be calculated entry-
wisely in the following two ways.

Ji,j(x) = EY[
∂

∂xi
lnf(Y|x)

∂

∂xj
lnf(Y|x)]

= −EY[
∂2

∂xi∂xj
lnf(Y|x)].

Given this bound, we have the estimator variance of each
parameter,

E[(xi − x̂i(Y))2] ≥ [J−1]ii(x),

which is useful in the analysis of the efficiency of an estimator.
A more general form is

Theorem 1 (Cramér-Rao Bound). The following inequality
holds true:

CE(x) ≥ b(x)b
T

(x)+(Ik−5Txb(x))J
−1

(x)(Ik−5Txb(x))
T
,

(4)
where b(x) is the bias of this estimator,

b(x) = x− E(X̂(Y)).

It is obvious that when the estimator is unbiased, that is,
b(x) = 0, (4) degenerates to (1).

C. Barankin Bounds

The Barankin bounds considers the variance of an estimator
of g(x), which is a real-valued function of x. Let ĝ(x) be
an unbiased estimator of g(x). Then the variance of ĝ(x) is
bounded from the below.

Lemma 1 (Barankin Bound). The following inequality holds
true for any finite x(i), ai, i = 1, . . . , p,

σ2(ĝ) ≥
{
∑p
i=1 ai[g(x(i))− g(x)]}2∫

[
∑p
i=1 aiL(x(i),x)]2f(y|x)dy

, (5)

where L(x(i),x) = f(y|x(i))
f(y|x) .

Barankin has shown that if an unbiased estimator of x
exists, then there exists an unbiased estimator that achieves the
Barankin bound above. This estimator is usually dependent on
the specific value of x, hence the name “locally best unbiased
estimates” [3].

Based on this basic result, McAulay et al. have shown the
following theorem [3].
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Theorem 2. X̂ denotes any unbiased estimator of x. The
following inequality holds true.

Σ(X̂) ≥ Λ−1 + (Φ−Λ−1A)∆−1(Φ−Λ−1A)T ,

where ∆ = B−ATΛ−1A, Φ = [x(1), . . . ,x(p)],

Λij =

∫
∂ ln f(y|x)

∂xi

∂ ln f(y|x)

∂xj
f(y|x)dy,

i, j = 1, . . . , k,

Aij =

∫
∂ ln f(y|x)

∂xi
L(x(j),x)f(y|x)dy,

i = 1, . . . , k, j = 1, . . . , p,

Bij =

∫
L(x(i),x)L(x(j),x)f(y|x)dy,

i, j = 1, . . . , p.

To clarify, {x(i)}pi=1 is the set of test points, and xi is the
i-th element of vector x. When there is no test points (p = 0),
the Barankin bound turns out to be the CRB for unbiased
esimation. When p > 0, the Barankin bounds are in general
an improvement on the CRB, since ∆ is positive definite and
(Φ−Λ−1A)∆−1(Φ−Λ−1A)T is positive semidefinite.

D. Chapman-Robbins Bounds

Chapman and Robbins derived another bound on the vari-
ance of an estimated parameter for any unbiased estimator [2].
They followed the basic steps of the proof of CRB, but avoided
the need to differentiate under integral signs or to perform
Schur decomposition. There results might also be obtained
from Barankin’s bounds [2][3][4]. In [2], only the case of
unbiased estimation of a single real parameter was given as
follows.

Lemma 2. Given a parameter x ∈ R, assume the measure-
ment data Y ∈ Rn have a probability distribution fx(y). Then
for any unbiased estimator X̂(Y ), the following inequality
holds true.

Var(X̂) ≥ 1

E[J ]
, (6)

where J = 1
h2 {[ fx+h(y)

fx(y) ]2 − 1}. Since (6) holds true for all
h 6= 0, we actually can reach a tighter bound by achieving
the infimum of E[J ]:

Var(X̂) ≥ 1

infh6=0E[J ]
.

The lemma can be obtained by choosing two test points in
(5): a1 = 1

h , a2 = − 1
h , x

(1) = x + h, x(2) = x, h 6= 0. The
lemma can also be extended to the multi-parameter case.

Theorem 3 (Chapman-Robbins Bound). Given a parameter
x ∈ Rk, assume the measurement data Y ∈ Rn have a
probability distribution fx(y). Then for any estimator X̂(Y),
the following inequality holds true.

Σ(X̂) ≥ [δmx]T

(
E

[[
δfx
fx

] [
δfx
fx

]T])†
[δmx],

where Σ(X̂) is the covariance matrix of X̂(Y), mx ≡ E[X̂],
“†” denotes the Moore-Penrose pseudoinverse,

δmx ≡
[

mx+v1 −mx

‖v1‖
, . . . ,

mx+vp −mx

‖vp‖

]T
,

and

δfx(y) ≡
[
fx+v1

(y)− fx(y)

‖v1‖
, . . . ,

fx+vp(y)− fx(y)

‖vp‖

]T
,

where v1, . . . ,vp ∈ Rk are p arbitrary vectors. Again this
bound can be improved by achieving the supremum of the
right hand side over all possible v1, . . . ,vp.

It can be seen that the Chapman-Robbins bound (by taking
the supremum over all possible deviations) is at least as sharp
as the CRB (by taking the derivatives) [2], but it is also more
difficult to compute in general.

E. Constrained Cramér-Rao Bounds

There are many cases in practice that we have constraints
when estimating parameters. Intuitively, imposing constraints
can help reduce the variance of an estimator. However, the
conventional CRB does not take the constraints into account.
As a result, the corresponding CRB is too “pessimistic”, and
the achievable estimator variance can even be lower (better)
than the CRB. Given this situation, we can directly derive the
so-called constrained CRB using the Chapman-Robbins bound
[5].

Theorem 4 (Constrained CRB). Let the parameter x to be
estimated lie in a constrained space X ⊂ Rk. Let v1, . . . ,vp
be p linear independent vectors with sufficient small lengths
such that x + vi ∈ X , i = 1, . . . , p. Assume the measurement
data Y ∈ Rn have a probability distribution fx(y). Then for
any estimator X̂(Y) with mean mx, the following inequality
holds true:

Σ(X̂) ≥ lim sup
x+vi∈X ,‖vi‖→0

i=1,...,p

Bc,

where Bc is the defined as the Chapman-Robbins bound over
v1, . . . ,vp. If some additional conditions hold (see [5]), then

Σ(X̂) ≥ [∇xmx]TA[ATJA]†AT [∇xmx],

where A is any matrix whose column space is the same as
span{v1, . . . ,vp}, and J is the Fisher information matrix.

Based on the constrained CRB, one can characterize the
performance of an estimator given sparsity constraint [6] or
low-rank constraint [7], etc.

III. CONCENTRATION OF MEASURE INEQUALITIES

A. Basic Inequalities

Theorem 5 (Markov Inequality). For any nonnegative random
variable X and t > 0, we have

P{X ≥ t} ≤ E[X]

t
.



FEBRUARY 2015, BY QIANG NING 3

Theorem 6 (Chebyshev’s Inequality). For any random vari-
able X and t > 0, we have

P{|X − E[X]| ≥ t} ≤ E[|X − E[X]|2]

t2
.

Theorem 7 (Chernoff’s Bound). Let X1, X2, . . . be an i.i.d.
sequence of random variables with finite mean µ. Let Sn =
X1 +X2 + · · ·+Xn. For a > µ, we have

P{Sn
n
≥ a} ≤ exp(−n[θa− lnM(θ)]),

where M(θ) = E[eθX1 ], θ > 0.

Usually since the left hand side of the Chernoff’s bound
does not dependent on θ, we can minimize the right hand
side over θ to achieve tighter bounds. Note here the condition
a > µ is required. If P{Sn

n ≤ a}, a < µ is desired, we can
construct Yn = −Xn, n = 1, 2, . . . , and then apply this bound.

B. Other Inequalities
All of these inequalities below come from Lugosi [8].

Theorem 8 (Chebyshev-Cantelli Inequality). Let t ≥ 0. Then

P{X − E[X] ≥ t} ≤ Var(X)

Var(X) + t2
.

Theorem 9 (Weak Law of Large Numbers). Let X1, X2, . . .
be an i.i.d. sequence of random variables with finite mean m.
Let Sn = X1 +X2 + · · ·+Xn. Then Sn/n

p.→ m.

Theorem 10 (Strong Law of Large Numbers). Let X1, X2, . . .
be an i.i.d. sequence of random variables with finite mean m.
Let Sn = X1 +X2 + · · ·+Xn. Then Sn/n

a.s.→ m.

Lemma 3 (Hoeffding’s Inequality). Let X be a random
variable with E[X] = 0, a ≤ X ≤ b. Then for s > 0,

E[esX ] ≤ es
2(b−a)2/8.

Theorem 11 (Hoeffding’s Tail Inequality). Let
X1, X2, . . . , Xn be independent bounded random variables
such that Xi ∈ [ai, bi] with probability one. Then for any
t > 0 we have

P{Sn − E[Sn] ≥ t} ≤ e−2t2/
∑n

i=1(bi−ai)2 ,

P{Sn − E[Sn] ≤ −t} ≤ e−2t2/
∑n

i=1(bi−ai)2 .

Theorem 12 (Bennett’s Inequality). Let X1, X2, . . . , Xn be
independent real-valued random variables with zero mean,
and assume that |Xi| ≤ c with probability one. Let

σ2 =
1

n

n∑
i=1

Var(Xi).

Then for any t > 0,

P{
n∑
i=1

Xi > t} ≤ exp(−nσ
2

c2
h(

ct

nσ2
)),

where h(u) = (1 + u) log (1 + u)− u, u ≥ 0.

Theorem 13 (Bernstein’s Inequality). Under the conditions of
the Bennett’s inequality, for any ε > 0,

P{ 1

n

n∑
i=1

Xi > ε} ≤ exp(− nε2

2σ2 + 2cε/3
).

IV. BOUNDS IN VAPNIK-CHERVONENKIS THEORY

A. Basic Settings

The basic components of the learning problem are (by
Vapnik [9]):

1) A generator of random vectors x ∈ Rn, draw indepen-
dently from a fixed but unknown probability distribution
function F (x).

2) A supervisor (or in other words, an oracle) who returns
a value y to every input x, according to a function y =
oracle(x).

3) A learning machine capable of implementing a set of
functions f(x, α), α ∈ Λ, where Λ in fact can be a set
of (even abstract) parameters.

The general setting of the learning problem can be formu-
lated as follows.

min
α∈Λ

R(α) = min
α∈Λ

∫
Q(z, α)dF (z), (7)

where z describes a pair (x, y), the loss function Q(z, α) usu-
ally measures the discrepancy between f(z, α) and oracle(z),
and F (z) is defined on a space Z.

To minimize the risk functional (7) in practice, we have
to base on finite i.i.d. samples z1, . . . , zl, which are also
called the empirical data. It leads to the inductive principle
of empirical risk minimization (ERM inductive principle) [9]:

1) The risk functional R(α) is replaced by the empirical
risk functional

Remp(α) =
1

l

l∑
i=1

Q(zi, α).

2) One approximates the function Q(z, α0) that minimizes
risk (7) by the function Q(z, αl) that minimizes the
empirical risk.

One important concept for a learning problem is called the
entropy. We only consider the case where Q(z, α) is a set
of indicator functions (for general functions, see [9]), given
samples z1, . . . , zl. Consider the set of l-dimensional binary
vectors

q(α) = (Q(z1, α), . . . , Q(zl, α)).

When α takes various values from Λ, the vertices of the
l-dimensional cube determined by q(α) on z1, . . . , zl also
change. The number of different vertices is defined as
NΛ(z1, . . . , zl). We then define the following concepts using
this number.

Definition 1. The random entropy

HΛ(z1, . . . , zl) = lnNΛ(z1, . . . , zl).

Definition 2. The entropy of Q(z, α) on samples of size l (also
called the VC entropy)

HΛ(l) = E[lnNΛ(z1, . . . , zl)].

Definition 3. The annealed VC entropy

HΛ
ann(l) = lnE[NΛ(z1, . . . , zl)].
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Definition 4. The growth function

GΛ(l) = ln sup
z1,...,zl

NΛ(z1, . . . , zl).

It is obvious that the inequalities HΛ(l) ≤ HΛ
ann(l) ≤ GΛ(l)

hold. Note both the VC entropy and the annealed VC entropy
are distribution dependent, whereas the growth function is not.

The equation

lim
l→∞

HΛ(l)

l
= 0

is a sufficient condition for consistency of the ERM principle.
The equation

lim
l→∞

HΛ
ann(l)

l
= 0

is a sufficient condition for a fast rate of convergence.
The equation

lim
l→∞

GΛ(l)

l
= 0

is a necessary and sufficient condition for consistency of ERM
for any probability measure. It is also the case that if this
condition holds true, the rate of convergence is fast.

Theorem 14. Any growth function either satisfies the equality

GΛ(l) = l ln 2,

or is bounded by the inequality

GΛ(l) ≤ h(ln
l

h
+ 1),

where h is an integer chosen in such a way that

GΛ(h) = h ln 2, GΛ(h+ 1) < (h+ 1) ln 2.

From this theorem we can define the VC dimension of
Q(z, α), α ∈ Λ is h (h =∞ if no such an h exists). Another
definition of the VC dimension is as follows [9].

Definition 5 (VC Dimension). The VC dimension of a set of
indicator functions Q(z, α), α ∈ Λ is the maximum number h
of vectors z1, . . . , zl that can be separated into two classes in
all 2h possible ways using functions of the set. Or in other
words, the VC dimension is the maximum number of vectors
that can be shattered by the set of functions.

Definition 6 (VC Dimension). The VC dimension of a set of
real functions Q(z, α), α ∈ Λ is the VC dimension of the set
of corresponding indicator functions

I(z, α, β) = θ{Q(z, α)− β}, α ∈ Λ, β ∈ (A,B),

where

Q(z, α) ∈ (A,B), θ(z) =

{
0 if z < 0,

1 if z ≥ 0,

and A, B can be infinite.

If for any n there exists a set of n vectors that can be
shattered by the set Q(z, α), α ∈ Λ, then the VC dimension is
infinity. Finiteness of the VC dimension is also a necessary and
sufficient condition for distribution-independent consistency of
ERM learning machines. The following example comes from
[9].

Example 1 (VC Dimension). The VC dimension of the set of
linear functions

Q(z, α) =

n∑
p=1

apzp + α0, α0, . . . , αp ∈ (−∞,∞),

is equal to h = n+ 1.

This example is a special case where the VC dimension
equals the number of free parameters, which might not be
true in general.

B. Bounding Theorems

First we introduce two basic inequalities.

Theorem 15. The following holds true:

P{sup
α∈Λ

∣∣∣∣∣
∫
Q(z, α)dF (z)− 1

l

l∑
i=1

Q(zi, α)

∣∣∣∣∣ > ε}

≤ 4exp{(H
Λ
ann(2l)

l
− ε2)l},

P{sup
α∈Λ

∫
Q(z, α)dF (z)− 1

l

∑l
i=1Q(zi, α)√∫

Q(z, α)dF (z)
> ε}

≤ 4exp{(H
Λ
ann(2l)

l
− ε2

4
)l}.

Using the fact that HΛ
ann(l) ≤ GΛ(l), we have

Theorem 16. The following holds true:

P{sup
α∈Λ

∣∣∣∣∣
∫
Q(z, α)dF (z)− 1

l

l∑
i=1

Q(zi, α)

∣∣∣∣∣ > ε}

≤ 4exp{(G
Λ(2l)

l
− ε2)l},

P{sup
α∈Λ

∫
Q(z, α)dF (z)− 1

l

∑l
i=1Q(zi, α)√∫

Q(z, α)dF (z)
> ε}

≤ 4exp{(G
Λ(2l)

l
− ε2

4
)l}.

Let

E = 4
GΛ(2l)− ln (η/4)

l
1,

where l is the number of samples, η is a probability used to
describe how probably the bounds are true, and GΛ,B(l) is the
so called growth function.

We first consider the bounded case where A ≤ Q(z, α) ≤
B,α ∈ Λ (see [9]).

Theorem 17. The following inequalities hold with probability
at least 1−η simultaneously for all functions of Q(z, α), α ∈ Λ
(including the function that minimizes the empirical risk):

R(α) ≤ Remp(α) +
B −A

2

√
E ,

1For constructing learning machines that control the generalization ability,

we can use E = 4
h(ln 2l

h
+1)−ln (η/4)

l
, or E = 2 lnN−ln η

l
in cases where

the set of Q(z, α), α ∈ Λ contains a finite number N of elements
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Remp(α)− B −A
2

√
E ≤ R(α).

The following inequalities hold with probability at least 1−2η
for the function Q(z, αl) that minimizes the empirical risk:

R(αl)− inf
α∈Λ

R(α) ≤ (B −A)

√
− ln η

2l
+
B −A

2

√
E .

Another case is 0 ≤ Q(z, α) ≤ B,α ∈ Λ.

Theorem 18. The following inequality holds with probability
at least 1 − η simultaneously for all functions Q(z, α) ≤
B,α ∈ Λ (including the function that minimizes the empirical
risk):

R(α) ≤ Remp(α) +
BE
2

(1 +

√
1 +

4Remp(α)

BE
)

The following inequalities hold with probability at least 1−2η
for the function Q(z, αl) that minimizes the empirical risk:

R(αl)− inf
α∈Λ

R(α) ≤ B
√
− ln η

2l
+
BE
2

(1 +

√
1 +

4

E
).

The theorems above provide bounds to the generaliza-
tion ability of learning machines: what actual risk R(αl) is
achieved by minimizing empirical risk; how close is the actual
risk to the minimal possible inf

α
R(α).

V. BOUNDS IN PROBABLY APPROXIMATELY CORRECT
LEARNING

A. Basic Settings

The concept of learnability was first proposed by Valiant
in 1984 [10]. Here I have picked an extension of it by
Blumer [11]. It was also Blumer who showed that the essential
condition for distribution-independent learnability is finiteness
of the VC dimension [11].

Definition 7. A concept class is a nonempty set C ⊂ 2X

of concepts, where X is a fixed set, either finite or countably
infinite, [0, 1]n of En (Euclidean n-dimension space) for some
n ≥ 1.

Definition 8. For x̄ = (x1, . . . , xm) ∈ Xm,m ≥ 1, the
m-sample of c ∈ C generated by x̄ is given by samc(x̄) =
(〈x1, Ic(x1)〉, . . . , 〈xm, Ic(xm)〉).

Definition 9. The sample space of C, denoted SC , is the set
of all m-samples over all c ∈ C and all x̄ = (x1, . . . , xm) ∈
Xm, for all m ≥ 1.

Definition 10. AC,H denotes the set of all functions A : SC →
H , where H is a set of Borel sets on X . H is the hypothesis
space, of which the elements are called hypotheses. For any
A ∈ AC,H , probability distribution P on X , c ∈ C, and
x̄ ∈ Xm, the error of A for concept c on x̄ (w.r.t. P ) is given
by errorA,c,P (x̄) = P (c∆h), where h = A(samc(x̄)), and
“∆” means symmetric difference.

Definition 11 (PAC Learnable). If a learning function A ∈
AC,H exists in such a way that for all 0 < ε, δ < 1, for all
c ∈ C, for all probability distribution P , the following holds

P{x̄ ∈ Xm(ε,δ) : errorA,c,P (x̄) > ε} ≤ δ,

where m(ε, δ) is the sample size function. The smallest such
sample size is called the sample complexity of A. Note by
saying C is learnable, we mean C is learnable by hypothesis
space H .

B. Bounding Theorems

One of the bounding theorems given by Blumer is as follows
[11].

Theorem 19. Let C be a nontrivial, well-behaved 2 concept
class.

i) C is learnable if and only if the VC dimension of C is
finite.

ii) If the VC dimension of C is d, where d <∞, then
a) For 0 < ε < 1 and sample size at least

max
(

4

ε
ln

2

δ
,

8d

ε
ln

13

ε

)
,

any consistent function A : SC → C is a learning
function for C and

b) For 0 < ε < 1
2 and sample size less than

max
(

1− ε
ε

ln
1

δ
, d(1− 2(ε(1− δ) + δ))

)
,

no function A : SC → H , for any hypothesis space
H , is a learning function for C.

These bounds have been improved in recent years. For
example, it was pointed out in [12] that the sample complexity
is at most

1

ε(1−
√
ε)

(
2d ln

6

ε
+ ln

2

δ

)
,

or
1

ε

(
ln |H|+ ln

1

δ

)
.

However, these improvements may still be a loose estimate.

VI. JOHNSON-LINDENSTRAUSS LEMMA

In [13], Johnson and Lindenstrauss first proposed the lemma
(JL Lemma), which was also geometrically described by the
authors as “given n points in Euclidean space, what is the
smallest k = k(n) so that these points can be moved into
k-dimensional Euclidean space via a transformation which
expands or contracts all pairwise distances by a factor of at
most 1 + ε?”, whereas a more common form of the lemma
now is (the following theorem and lemma come from some
lecture notes by Sham Kakade and Greg Shakhnarovich)

Theorem 20 (JL Lemma). Let ε ∈ (0, 1
2 ). Let Q ⊂ Rd be

a set of n points and k = 20 logn
ε2 . There exists a Lipschitz

mapping f : Rd → Rk such that for all u, v ∈ Q:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (8)

There are various ways to prove the JL lemma (a brief
overview can be found in [14]). Although not the tightest,
the one I refer to uses the following lemma:

2See [11]for details



FEBRUARY 2015, BY QIANG NING 6

Lemma 4 (Norm preservation). Let x ∈ Rd. Assume that the
entries in A ⊂ Rk×d are sampled independently from N(0, 1).
Then

P{(1−ε)‖x‖2 ≤ ‖ 1√
k
Ax‖2 ≤ (1+ε)‖x‖2} ≥ 1−2e−(ε2−ε3)k/4.

(9)

The proof of Theorem 20: Choose the mapping f in such
a way that f = 1√

k
Ax, where A is a k × d matrix the entry

of which is sampled i.i.d. from a Gaussian N(0, 1). We have

P{∃u, v, s.t. the mapping fails to satisfy Eq. (8)}
≤

∑
u,v∈Q

P{s.t. the mapping fails to satisfy Eq. (8)}

≤ 2n2e−(ε2−ε3)k/4. (10)

If we choose k(ε) properly (e.g., k ≥ 20lnn
ε2 ), the probability

of (10) can be strictly smaller than 1, which means such a
map that satisfies (8) always exists.

Note the bound for k does not guarantee that k is smaller
than d (dimension reduction). It can also be seen that the
requirement for A to be sampled from N(0, 1) can be further
relaxed.
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